
Versi PDF oleh Wuri Nugrahadi http://empu.web.id

Laravel v3.2

A Framework For Web Artisans

Laravel is a clean and classy framework for PHP web development. Freeing you from

spaghetti code, Laravel helps you

create wonderful applications using simple, expressive syntax. Development should be a

creative experience

that you enjoy, not something that is painful. Enjoy the fresh air.

ii

TABLE OF CONTENTS

Laravel Documentation ... 1

The Basics ... 1

Who Will Enjoy Laravel? ... 1

What Makes Laravel Different? ... 1

Application Structure ... 3

Laravel's Community ... 3

License Information ... 3

Laravel Change Log ... 3

Laravel 3.2.8.. 3

Upgrading From 3.2.7 ... 3

Laravel 3.2.7.. 4

Upgrading From 3.2.6 ... 4

Laravel 3.2.6.. 4

Upgrading From 3.2.5 ... 4

Laravel 3.2.5.. 4

Upgrading From 3.2.4 ... 4

Laravel 3.2.4.. 4

Upgrading From 3.2.3 ... 4

Laravel 3.2.3.. 4

Upgrading From 3.2.2 ... 4

Laravel 3.2.2 .. 5

Upgrading From 3.2.1 ... 5

Laravel 3.2.1.. 5

Upgrading From 3.2 .. 5

Laravel 3.2 .. 5

Upgrading From 3.1 .. 7

Laravel 3.1.9.. 7

Upgrading From 3.1.8 ... 7

Laravel 3.1.8.. 7

Upgrading From 3.1.7 ... 7

Laravel 3.1.7.. 7

Upgrading From 3.1.6 ... 8

iii

Laravel 3.1.6.. 8

Upgrading From 3.1.5 ... 8

Laravel 3.1.5.. 8

Upgrading From 3.1.4 ... 8

Laravel 3.1.4.. 8

Upgrading From 3.1.3 ... 8

Laravel 3.1.3.. 8

Upgrade From 3.1.2 .. 8

Laravel 3.1.2.. 8

Upgrade From 3.1.1 .. 8

Laravel 3.1.1.. 9

Upgrading From 3.1 .. 9

Laravel 3.1 .. 9

Upgrading From 3.0 .. 9

Installation & Setup .. 11

Requirements .. 11

Installation .. 11

Extra Goodies ... 11

Problems? .. 12

Server Configuration .. 12

Basic Configuration ... 12

Environments .. 13

Cleaner URLs... 13

Routing .. 14

The Basics ... 14

Wildcards .. 16

The 404 Event ... 16

Filters .. 17

Pattern Filters .. 17

Global Filters ... 18

Route Groups .. 18

Named Routes ... 18

HTTPS Routes.. 19

Bundle Routes ... 20

Controller Routing ... 20

CLI Route Testing .. 22

Controllers.. 22

The Basics ... 22

iv

Controller Routing ... 23

Bundle Controllers ... 23

Action Filters ... 24

Nested Controllers ... 25

Controller Layouts ... 25

RESTful Controllers ... 26

Dependency Injection ... 26

Controller Factory .. 27

Models & Libraries .. 27

Models... 27

Libraries .. 28

Auto Loading ... 28

Best Practices .. 28

Entities.. 29

Services ... 29

Repositories ... 30

Views & Responses ... 30

The Basics ... 30

Binding Data To Views ... 32

Nesting Views .. 33

Named Views ... 33

View Composers .. 34

Redirects ... 34

Redirecting With Flash Data... 36

Downloads ... 36

Errors.. 36

Input & Cookies .. 37

Input ... 37

JSON Input ... 38

Files .. 38

Old Input ... 38

Redirecting With Old Input... 39

Cookies ... 39

Merging & Replacing .. 40

Clearing Input ... 40

Bundles .. 40

The Basics ... 40

Creating Bundles ... 41

v

Registering Bundles ... 41

Bundles & Class Loading ... 42

Starting Bundles.. 42

Routing To Bundles ... 43

Using Bundles ... 43

Bundle Assets .. 44

Installing Bundles .. 45

Upgrading Bundles .. 45

Class Auto Loading ... 46

The Basics ... 46

Registering Directories ... 46

Registering Mappings ... 46

Registering Namespaces ... 47

Errors & Logging ... 47

Basic Configuration ... 47

Ignored Errors .. 47

Error Detail .. 47

Logging .. 48

The Logger Class.. 48

Runtime Configuration .. 48

The Basics ... 48

Retrieving Options ... 48

Setting Options .. 49

Examining Requests ... 49

Working With The URI ... 49

Other Request Helpers ... 50

Generating URLs... 51

The Basics ... 51

URLs To Routes ... 51

URLs To Controller Actions .. 52

URLs To Assets .. 52

URL Helpers .. 52

Events .. 53

The Basics ... 53

Firing Events ... 53

Listening To Events.. 54

Queued Events .. 54

Laravel Events ... 55

vi

Validation ... 55

The Basics ... 55

Validation Rules .. 56

Required... 57

Alpha, Alpha Numeric, & Alpha Dash .. 57

Size .. 57

Numeric ... 58

Inclusion & Exclusion ... 58

Confirmation .. 58

Acceptance ... 58

Same & Different .. 58

Regular Expression Match .. 59

Uniqueness & Existence ... 59

Dates ... 59

E-Mail Addresses .. 60

URLs .. 60

Uploads .. 60

Retrieving Error Messages .. 61

Validation Walkthrough ... 62

Custom Error Messages ... 63

Custom Validation Rules .. 64

Working with Files .. 66

Reading Files ... 66

Writing Files .. 66

Removing Files... 66

File Uploads... 66

File Extensions .. 67

Checking File Types ... 67

Getting MIME Types... 67

Copying Directories .. 67

Removing Directories ... 68

Working with Strings .. 68

Capitalization, Etc. .. 68

Word & Character Limiting .. 68

Generating Random Strings ... 69

Singular & Plural ... 69

Slugs ... 69

Localization .. 70

vii

The Basics ... 70

Retrieving A Language Line .. 70

Place Holders & Replacements ... 71

Encryption .. 72

The Basics ... 72

Encrypting A String ... 72

Decrypting A String.. 72

IoC Container ... 72

Definition .. 72

Registering Objects .. 73

Resolving Objects ... 73

Unit Testing .. 74

The Basics ... 74

Creating Test Classes ... 74

Running Tests ... 74

Calling Controllers From Tests ... 75

Database Configuration .. 76

Quick Start Using SQLite ... 76

Configuring Other Databases ... 77

Setting The Default Connection Name .. 77

Overwriting The Default PDO Options .. 77

Raw Queries ... 78

The Basics ... 78

Other Query Methods... 78

PDO Connections ... 79

Fluent Query Builder .. 79

The Basics ... 79

Retrieving Records ... 79

Building Where Clauses ... 80

where and or_where .. 80

where_in, where_not_in, or_where_in, and or_where_not_in 81

where_null, where_not_null, or_where_null, and or_where_not_null 81

Nested Where Clauses.. 81

Dynamic Where Clauses .. 82

Table Joins .. 82

Ordering Results .. 83

Skip & Take ... 83

Aggregates ... 83

viii

Expressions ... 84

Inserting Records ... 84

Updating Records .. 84

Deleting Records .. 85

Eloquent ORM .. 85

The Basics ... 85

Conventions .. 86

Retrieving Models .. 86

Aggregates ... 87

Inserting & Updating Models .. 87

Relationships ... 89

One-To-One .. 89

One-To-Many.. 90

Many-To-Many ... 91

Inserting Related Models .. 92

Inserting Related Models (Many-To-Many) ... 93

Working With Intermediate Tables .. 94

Eager Loading .. 95

Constraining Eager Loads .. 96

Getter & Setter Methods... 97

Mass-Assignment .. 97

Converting Models To Arrays .. 98

Deleting Models ... 99

Schema Builder .. 99

The Basics ... 99

Creating & Dropping Tables ... 99

Adding Columns .. 100

Dropping Columns ... 101

Adding Indexes .. 102

Dropping Indexes ... 102

Foreign Keys .. 103

Migrations .. 104

The Basics ... 104

Prepping Your Database ... 104

Creating Migrations ... 104

Running Migrations ... 105

Rolling Back .. 105

Redis .. 105

ix

The Basics ... 105

Configuration .. 106

Usage .. 106

Cache Configuration ... 108

The Basics ... 108

Database ... 108

Memcached ... 109

Redis ... 109

Cache Keys ... 109

In-Memory Cache ... 110

Cache Usage ... 110

Storing Items ... 110

Retrieving Items ... 110

Removing Items ... 111

Auth Configuration ... 112

The Basics ... 112

The Authentication Driver .. 112

The Default "Username" ... 112

Authentication Model ... 113

Authentication Table .. 113

Authentication Usage .. 113

Salting & Hashing .. 113

Logging In.. 114

Protecting Routes ... 114

Retrieving The Logged In User .. 115

Logging Out ... 115

Tasks.. 116

The Basics ... 116

Creating & Running Tasks ... 116

Bundle Tasks... 117

CLI Options ... 118

Artisan Commands ... 118

Help .. 118

Application Configuration (More Information) ... 118

Database Sessions (More Information) .. 119

Migrations (More Information) .. 119

Bundles (More Information) .. 119

Tasks (More Information) ... 120

x

Unit Tests (More Information) ... 120

Routing (More Information) .. 120

Application Keys .. 120

CLI Options ... 121

Laravel on GitHub ... 121

The Basics ... 121

Repositories ... 121

Branches ... 121

Pull Requests ... 122

Contributing to Laravel Via Command-Line ... 123

Getting Started .. 123

Forking Laravel .. 123

Cloning Laravel .. 123

Adding your Fork ... 124

Creating Branches ... 124

Committing.. 125

Pushing to your Fork ... 125

Submitting a Pull Request .. 125

What's Next?.. 126

Contributing to Laravel Using TortoiseGit .. 126

Getting Started .. 126

Forking Laravel .. 126

Cloning Laravel .. 127

Adding your Fork ... 127

Creating Branches ... 127

Committing.. 128

Pushing to your Fork ... 128

Submitting a Pull Request .. 128

What's Next?.. 129

1

GENERAL

LARAVEL DOCUMENTATION

The Basics

Welcome to the Laravel documentation. These documents were designed to function both as

a getting-started guide and as a feature reference. Even though you may jump into any

section and start learning, we recommend reading the documentation in order as it allows

us to progressively establish concepts that will be used in later documents.

Who Will Enjoy Laravel?

Laravel is a powerful framework that emphasizes flexibility and expressiveness. Users new

to Laravel will enjoy the same ease of development that is found in the most popular and

lightweight PHP frameworks. More experienced users will appreciate the opportunity to

modularize their code in ways that are not possible with other frameworks. Laravel's

flexibility will allow your organization to update and mold the application over time as is

needed and its expressiveness will allow you and your team to develop code that is both

concise and easily read.

What Makes Laravel Different?

There are many ways in which Laravel differentiates itself from other frameworks. Here are

a few examples that we think make good bullet points:

 Bundles are Laravel's modular packaging system. The Laravel Bundle Repository is

already populated with quite a few features that can be easily added to your

application. You can either download a bundle repository to your bundles directory

or use the "Artisan" command-line tool to automatically install them.

 The Eloquent ORM is the most advanced PHP ActiveRecord implementation

available. With the capacity to easily apply constraints to both relationships and

nested eager-loading you'll have complete control over your data with all of the

http://bundles.laravel.com/

2

conveniences of ActiveRecord. Eloquent natively supports all of the methods from

Laravel's Fluent query-builder.

 Application Logic can be implemented within your application either using

controllers (which many web-developers are already familiar with) or directly into

route declarations using syntax similar to the Sinatra framework. Laravel is

designed with the philosophy of giving a developer the flexibility that they need to

create everything from very small sites to massive enterprise applications.

 Reverse Routing allows you to create links to named routes. When creating links

just use the route's name and Laravel will automatically insert the correct URI. This

allows you to change your routes at a later time and Laravel will update all of the

relevant links site-wide.

 Restful Controllers are an optional way to separate your GET and POST request

logic. In a login example your controller's get_login() action would serve up the form

and your controller's post_login() action would accept the posted form, validate, and

either redirect to the login form with an error message or redirect your user to their

dashboard.

 Class Auto Loading keeps you from having to maintain an autoloader configuration

and from loading unnecessary components when they won't be used. Want to use a

library or model? Don't bother loading it, just use it. Laravel will handle the rest.

 View Composers are blocks of code that can be run when a view is loaded. A good

example of this would be a blog side-navigation view that contains a list of random

blog posts. Your composer would contain the logic to load the blog posts so that all

you have to do i load the view and it's all ready for you. This keeps you from having

to make sure that your controllers load the a bunch of data from your models for

views that are unrelated to that method's page content.

 The IoC container (Inversion of Control) gives you a method for generating new

objects and optionally instantiating and referencing singletons. IoC means that

you'll rarely ever need to bootstrap any external libraries. It also means that you can

access these objects from anywhere in your code without needing to deal with an

inflexible monolithic structure.

 Migrations are version control for your database schemas and they are directly

integrated into Laravel. You can both generate and run migrations using the

"Artisan" command-line utility. Once another member makes schema changes you

can update your local copy from the repository and run migrations. Now you're up to

date, too!

 Unit-Testing is an important part of Laravel. Laravel itself sports hundreds of tests

to help ensure that new changes don't unexpectedly break anything. This is one of

the reasons why Laravel is widely considered to have some of the most stable

releases in the industry. Laravel also makes it easy for you to write unit-tests for

your own code. You can then run tests with the "Artisan" command-line utility.

 Automatic Pagination prevents your application logic from being cluttered up with

a bunch of pagination configuration. Instead of pulling in the current page, getting a

count of db records, and selected your data using a limit/offset just call 'paginate'

and tell Laravel where to output the paging links in your view. Laravel automatically

does the rest. Laravel's pagination system was designed to be easy to implement and

easy to change. It's also important to note that just because Laravel can handle

these things automatically doesn't mean that you can't call and configure these

systems manually if you prefer.

These are just a few ways in which Laravel differentiates itself from other PHP frameworks.

All of these features and many more are discussed thoroughly in this documentation.

3

Application Structure

Laravel's directory structure is designed to be familiar to users of other popular PHP

frameworks. Web applications of any shape or size can easily be created using this

structure similarly to the way that they would be created in other frameworks.

However due to Laravel's unique architecture, it is possible for developers to create their

own infrastructure that is specifically designed for their application. This may be most

beneficial to large projects such as content-management-systems. This kind of architectural

flexibility is unique to Laravel.

Throughout the documentation we'll specify the default locations for declarations where

appropriate.

Laravel's Community

Laravel is lucky to be supported by rapidly growing, friendly and enthusiastic community.

The Laravel Forumsare a great place to find help, make a suggestion, or just see what other

people are saying.

Many of us hang out every day in the #laravel IRC channel on FreeNode. Here's a forum

post explaining how you can join us. Hanging out in the IRC channel is a really great way to

learn more about web-development using Laravel. You're welcome to ask questions, answer

other people's questions, or just hang out and learn from other people's questions being

answered. We love Laravel and would love to talk to you about it, so don't be a stranger!

License Information

Laravel is open-sourced software licensed under the MIT License.

LARAVEL CHANGE LOG

Laravel 3.2.8

 Fix double slash bug in URLs when using languages and no "index.php".

 Fix possible security issue in Auth "remember me" cookies.

Upgrading From 3.2.7

 Replace the laravel folder.

http://forums.laravel.com/
http://forums.laravel.com/viewtopic.php?id=671
http://forums.laravel.com/viewtopic.php?id=671
http://www.opensource.org/licenses/mit-license.php

4

Laravel 3.2.7

 Fix bug in Eloquent to_array method.

 Fix bug in displaying of generic error page.

Upgrading From 3.2.6

 Replace the laravel folder.

Laravel 3.2.6

 Revert Blade code back to 3.2.3 tag.

Upgrading From 3.2.5

 Replace the laravel folder.

Laravel 3.2.5

 Revert nested where code back to 3.2.3 tag.

Upgrading From 3.2.4

 Replace the laravel folder.

Laravel 3.2.4

 Speed up many to many eager loading mapping.

 Tweak the Eloquent::changed() method.

 Various bug fixes and improvements.

Upgrading From 3.2.3

 Replace the laravel folder.

Laravel 3.2.3

 Fixed eager loading bug in Eloquent.

 Added laravel.resolving event for all IoC resolutions.

Upgrading From 3.2.2

 Replace the laravel folder.

5

Laravel 3.2.2

 Overall improvement of Postgres support.

 Fix issue in SQL Server Schema grammar.

 Fix issue with eager loading and first or find .

 Fix bug causing parameters to not be passed to IoC::resolve .

 Allow the specification of hostnames in environment setup.

 Added DB::last_query method.

 Added password option to Auth configuration.

Upgrading From 3.2.1

 Replace the laravel folder.

Laravel 3.2.1

 Fixed bug in cookie retrieval when cookie is set on same request.

 Fixed bug in SQL Server grammar for primary keys.

 Fixed bug in Validator on PHP 5.4.

 If HTTP / HTTPS is not specified for generated links, current protocol is used.

 Fix bug in Eloquent auth driver.

 Added format method to message container.

Upgrading From 3.2

 Replace the laravel folder.

Laravel 3.2

 Added to_array method to the base Eloquent model.

 Added $hidden static variable to the base Eloquent model.

 Added sync method to has_many_and_belongs_to Eloquent relationship.

 Added save method to has_many Eloquent relationship.

 Added unless structure to Blade template engine.

 Added Blade comments.

 Added simpler environment management.

 Added Blade::extend() method to define custom blade compilers.

 Added View::exists method.

 Use Memcached API instead of older Memcache API.

 Added support for bundles outside of the bundle directory.

 Added support for DateTime database query bindings.

http://laravel.com/docs/database/eloquent#to-array
http://laravel.com/docs/database/eloquent#to-array
http://laravel.com/docs/database/eloquent#sync-method
http://laravel.com/docs/database/eloquent#has-many-save
http://laravel.com/docs/views/templating#blade-unless
http://laravel.com/docs/views/templating#blade-comments
http://laravel.com/docs/install#environments
http://php.net/manual/en/book.memcached.php
http://php.net/manual/en/book.memcache.php

6

 Migrated to the Symfony HttpFoundation component for core request / response

handling.

 Fixed the passing of strings into the Input::except method.

 Fixed replacement of optional parameters in URL::transpose method.

 Improved update handling on Has_Many and Has_One relationships.

 Improved View performance by only loading contents from file once.

 Fix handling of URLs beginning with hashes in URL::to .

 Fix the resolution of unset Eloquent attributes.

 Allows pivot table timestamps to be disabled.

 Made the get_timestamp Eloquent method static.

 Request::secure now takes application.ssl configuration option into

consideration.

 Simplified the paths.php file.

 Only write file caches if number of minutes is greater than zero.

 Added $default parameter to Bundle::option method.

 Fixed bug present when using Eloquent models with Twig.

 Allow multiple views to be registered for a single composer.

 Added Request::set_env method.

 Schema::drop now accepts $connection as second parameter.

 Added Input::merge method.

 Added Input::replace method.

 Added saving, saved, updating, creating, deleting, and deleted events to Eloquent.

 Added new Sectionable interface to allow cache drivers to simulate namespacing.

 Added support for HAVING SQL clauses.

 Added array_pluck helper, similar to pluck method in Underscore.js.

 Allow the registration of custom cache and session drivers.

 Allow the specification of a separate asset base URL for using CDNs.

 Allow a starter Closure to be defined in bundles.php to be run on Bundle::start.

 Allow the registration of custom database drivers.

 New, driver based authentication system.

 Added Input::json() method for working with applications using Backbone.js or

similar.

 Added Response::json method for creating JSON responses.

 Added Response::eloquent method for creating Eloquent responses.

 Fixed bug when using many-to-many relationships on non-default database

connection.

 Added true reflection based IoC to container.

 Added Request::route()->controller and Request::route()-

>controller_action .

 Added Event::queue , Event::flusher , and Event::flush methods to Event

class.

7

 Added array_except and array_only helpers, similar

to Input::except and Input::only but for arbitrary arrays.

Upgrading From 3.1

 Add new asset_url and profiler options to application configuration.

 Replace auth configuration file.

Add the following entry to the aliases array in config/application.php ..

'Profiler' => 'Laravel\\Profiling\\Profiler',

Add the following code above Blade::sharpen() in application/start.php ..

if (Config::get('application.profiler'))

{

 Profiler::attach();

}

 Upgrade the paths.php file.

 Replace the laravel folder.

Laravel 3.1.9

 Fixes cookie session driver bug that caused infinite loop on some occasions.

Upgrading From 3.1.8

 Replace the laravel folder.

Laravel 3.1.8

 Fixes possible WSOD when using Blade's @include expression.

Upgrading From 3.1.7

 Replace the laravel folder.

Laravel 3.1.7

 Fixes custom validation language line loading from bundles.

 Fixes double-loading of classes when overriding the core.

 Classify migration names.

8

Upgrading From 3.1.6

 Replace the laravel folder.

Laravel 3.1.6

 Fixes many-to-many eager loading in Eloquent.

Upgrading From 3.1.5

 Replace the laravel folder.

Laravel 3.1.5

 Fixes bug that could allow secure cookies to be sent over HTTP.

Upgrading From 3.1.4

 Replace the laravel folder.

Laravel 3.1.4

 Fixes Response header casing bug.

 Fixes SQL "where in" (...) short-cut bug.

Upgrading From 3.1.3

 Replace the laravel folder.

Laravel 3.1.3

 Fixes delete method in Eloquent models.

Upgrade From 3.1.2

 Replace the laravel folder.

Laravel 3.1.2

 Fixes Eloquent query method constructor conflict.

Upgrade From 3.1.1

 Replace the laravel folder.

9

Laravel 3.1.1

 Fixes Eloquent model hydration bug involving custom setters.

Upgrading From 3.1

 Replace the laravel folder.

Laravel 3.1

 Added events to logger for more flexibility.

 Added database.fetch configuration option.

 Added controller factories for injecting any IoC.

 Added link_to_action HTML helpers.

 Added ability to set default value on Config::get.

 Added the ability to add pattern based filters.

 Improved session ID assignment.

 Added support for "unsigned" integers in schema builder.

 Added config, view, and lang loaders.

 Added more logic to application/start.php for more flexibility.

 Added foreign key support to schema builder.

 Postgres "unique" indexes are now added with ADD CONSTRAINT.

 Added "Event::until" method.

 Added "memory" cache and session drivers.

 Added Controller::detect method.

 Added Cache::forever method.

 Controller layouts now resolved in Laravel\Controller __construct.

 Rewrote Eloquent and included in core.

 Added "match" validation rule.

 Fixed table prefix bug.

 Added Form::macro method.

 Added HTML::macro method.

 Added Route::forward method.

 Prepend table name to default index names in schema.

 Added "forelse" to Blade.

 Added View::render_each.

 Able to specify full path to view (path:).

 Added support for Blade template inheritance.

 Added "before" and "after" validation checks for dates.

Upgrading From 3.0

Replace your application/start.php file.

The default start.php file has been expanded in order to give you more flexibility over the

loading of your language, configuration, and view files. To upgrade your file, copy your

current file and paste it at the bottom of a copy of the new Laravel 3.1 start file. Next, scroll

up in the start file until you see the default Autoloader registrations (line 61 and line 76).

10

Delete both of these sections since you just pasted your previous auto-loader registrations

at the bottom of the file.

Remove the display option from your errors configuration file.

This option is now set at the beginning of your application/start file.

Call the parent controller's constructor from your controller.

Simply add a parent::__construct(); to to any of your controllers that have a constructor.

Prefix Laravel migration created indexes with their table name.

If you have created indexes on tables using the Laravel migration system and you used to

the default index naming scheme provided by Laravel, prefix the index names with their

table name on your database. So, if the current index name is "id_unique" on the "users"

table, make the index name "users_id_unique".

Add alias for Eloquent in your application configuration.

Add the following to the aliases array in your application/config/application.php file:

'Eloquent' => 'Laravel\\Database\\Eloquent\\Model',

'Blade' => 'Laravel\\Blade',

Update Eloquent many-to-many tables.

Eloquent now maintains created_at and updated_at column on many-to-many

intermediate tables by default. Simply add these columns to your tables. Also, many-to-

many tables are now the singular model names concatenated with an underscore. For

example, if the relationship is between User and Role, the intermediate table name should

be role_user.

Remove Eloquent bundle.

If you are using the Eloquent bundle with your installation, you can remove it from your

bundles directory and your application/bundles.php file. Eloquent version 2 is included in

the core in Laravel 3.1. Your models can also now extend simply Eloquent instead

of Eloquent\Model.

Update your config/strings.php file.

English pluralization and singularization is now automatic. Just completely replace

yourapplication/config/strings.php file.

Add the fetch option to your database configuration file.

A new fetch option allows you to specify in which format you receive your database results.

Just copy and paste the option from the new application/config/database.php file.

Add database option to your Redis configuration.

If you are using Redis, add the "database" option to your Redis connection configurations.

The "database" value can be zero by default.

'redis' => array(

11

 'default' => array(

 'host' => '127.0.0.1',

 'port' => 6379,

 'database' => 0

),

),

INSTALLATION & SETUP

Requirements

 Apache, nginx, or another compatible web server.

 Laravel takes advantage of the powerful features that have become available in PHP

5.3. Consequently, PHP 5.3 is a requirement.

 Laravel uses the FileInfo library to detect files' mime-types. This is included by

default with PHP 5.3. However, Windows users may need to add a line to their

php.ini file before the Fileinfo module is enabled. For more information check out

the installation / configuration details on PHP.net.

 Laravel uses the Mcrypt library for encryption and hash generation. Mcrypt typically

comes pre-installed. If you can't find Mcrypt in the output of phpinfo() then check

the vendor site of your LAMP installation or check out the installation /

configuration details on PHP.net.

Installation

1. Download Laravel

2. Extract the Laravel archive and upload the contents to your web server.

3. Set the value of the key option in the config/application.php file to a random, 32

character string.

4. Verify that the storage/views directory is writable.

5. Navigate to your application in a web browser.

If all is well, you should see a pretty Laravel splash page. Get ready, there is lots more to

learn!

Extra Goodies

Installing the following goodies will help you take full advantage of Laravel, but they are not

required:

 SQLite, MySQL, PostgreSQL, or SQL Server PDO drivers.

 Memcached or APC.

http://php.net/manual/en/book.fileinfo.php
http://php.net/manual/en/fileinfo.installation.php
http://php.net/manual/en/book.mcrypt.php
http://php.net/manual/en/book.mcrypt.php
http://php.net/manual/en/book.mcrypt.php
http://laravel.com/download

12

Problems?

If you are having problems installing, try the following:

 Make sure the public directory is the document root of your web server. (see: Server

Configuration below)

 If you are using mod_rewrite, set the index option

in application/config/application.php to an empty string.

 Verify that your storage folder and the folders within are writable by your web

server.

Server Configuration

Like most web-development frameworks, Laravel is designed to protect your application

code, bundles, and local storage by placing only files that are necessarily public in the web

server's DocumentRoot. This prevents some types of server misconfiguration from making

your code (including database passwords and other configuration data) accessible through

the web server. It's best to be safe.

In this example let's imagine that we installed Laravel to the

directory /Users/JonSnow/Sites/MySite.

A very basic example of an Apache VirtualHost configuration for MySite might look like this.

<VirtualHost *:80>

 DocumentRoot /Users/JonSnow/Sites/MySite/public

 ServerName mysite.dev

</VirtualHost>

Notice that while we installed to /Users/JonSnow/Sites/MySite our DocumentRoot points

to/Users/JonSnow/Sites/MySite/public.

While pointing the DocumentRoot to the public folder is a commonly used best-practice, it's

possible that you may need to use Laravel on a host that does not allow you to update your

DocumentRoot. A collection of algorithms to circumvent this need can be found on the

Laravel forums.

Basic Configuration

All of the configuration provided are located in your applications config/ directory. We

recommend that you read through these files just to get a basic understanding of the

options available to you. Pay special attention to

theapplication/config/application.php file as it contains the basic configuration options

for your application.

It's extremely important that you change the application key option before working on

your site. This key is used throughout the framework for encryption, hashing, etc. It lives in

the config/application.php file and should be set to a random, 32 character string. A

http://forums.laravel.com/viewtopic.php?id=1258
http://forums.laravel.com/viewtopic.php?id=1258

13

standards-compliant application key can be automatically generated using the Artisan

command-line utility. More information can be found in the Artisan command index.

Note: If you are using mod_rewrite, you should set the index option to an empty string.

Environments

Most likely, the configuration options you need for local development are not the same as

the options you need on your production server. Laravel's default environment handling

mechanism is URL based, which will make setting up environments a breeze. Pop open

the paths.php file in the root of your Laravel installation. You should see an array like

this:

$environments = array(

 'local' => array('http://localhost*', '*.dev'),

);

This tells Laravel that any URLs beginning with "localhost" or ending with ".dev" should be

considered part of the "local" environment.

Next, create an application/config/local directory. Any files and options you place in this

directory will override the options in the base application/config directory. For example,

you may wish to create an application.phpfile within your new local configuration

directory:

return array(

 'url' => 'http://localhost/laravel/public',

);

In this example, the local URL option will override the URL option

in application/config/application.php. Notice that you only need to specify the options

you wish to override.

Isn't it easy? Of course, you are free to create as many environments as you wish!

Cleaner URLs

Most likely, you do not want your application URLs to contain "index.php". You can remove

it using HTTP rewrite rules. If you are using Apache to serve your application, make sure to

enable mod_rewrite and create a.htaccess file like this one in your public directory:

http://laravel.com/docs/artisan/commands

14

<IfModule mod_rewrite.c>

 RewriteEngine on

 RewriteCond %{REQUEST_FILENAME} !-f

 RewriteCond %{REQUEST_FILENAME} !-d

 RewriteRule ^(.*)$ index.php/$1 [L]

</IfModule>

Is the .htaccess file above not working for you? Try this one:

Options +FollowSymLinks

RewriteEngine on

RewriteCond %{REQUEST_FILENAME} !-f

RewriteCond %{REQUEST_FILENAME} !-d

RewriteRule . index.php [L]

After setting up HTTP rewriting, you should set the index configuration option

inapplication/config/application.php to an empty string.

Note: Each web server has a different method of doing HTTP rewrites, and may require

a slightly different .htaccess file.

ROUTING

The Basics

Laravel uses the latest features of PHP 5.3 to make routing simple and expressive. It's

important that building everything from APIs to complex web applications is as easy as

possible. Routes are typically defined inapplication/routes.php.

Unlike many other frameworks with Laravel it's possible to embed application logic in two

ways. While controllers are the most common way to implement application logic it's also

possible to embed your logic directly into routes. This is especially nice for small sites that

contain only a few pages as you don't have to create a bunch of controllers just to expose

half a dozen methods or put a handful of unrelated methods into the same controller and

then have to manually designate routes that point to them.

15

In the following example the first parameter is the route that you're "registering" with the

router. The second parameter is the function containing the logic for that route. Routes are

defined without a front-slash. The only exception to this is the default route which is

represented with only a front-slash.

Note: Routes are evaluated in the order that they are registered, so register any "catch-

all" routes at the bottom of your routes.php file.

Registering a route that responds to "GET /":

Route::get('/', function()

{

 return "Hello World!";

});

Registering a route that is valid for any HTTP verb (GET, POST, PUT, and DELETE):

Route::any('/', function()

{

 return "Hello World!";

});

Registering routes for other request methods:

Route::post('user', function()

{

 //

});

Route::put('user/(:num)', function($id)

{

 //

});

Route::delete('user/(:num)', function($id)

{

 //

});

Registering a single URI for multiple HTTP verbs:

Router::register(array('GET', 'POST'), $uri, $callback);

16

Wildcards

Forcing a URI segment to be any digit:

Route::get('user/(:num)', function($id)

{

 //

});

Allowing a URI segment to be any alpha-numeric string:

Route::get('post/(:any)', function($title)

{

 //

});

Catching the remaining URI without limitations:

Route::get('files/(:all)', function($path)

{

 //

});

Allowing a URI segment to be optional:

Route::get('page/(:any?)', function($page = 'index')

{

 //

});

The 404 Event

If a request enters your application but does not match any existing route, the 404 event

will be raised. You can find the default event handler in your application/routes.php file.

The default 404 event handler:

Event::listen('404', function()

{

 return Response::error('404');

});

You are free to change this to fit the needs of your application!

Further Reading:

 Events

http://laravel.com/docs/events

17

Filters

Route filters may be run before or after a route is executed. If a "before" filter returns a

value, that value is considered the response to the request and the route is not executed,

which is convenient when implementing authentication filters, etc. Filters are typically

defined in application/routes.php.

Registering a filter:

Route::filter('filter', function()

{

 return Redirect::to('home');

});

Attaching a filter to a route:

Route::get('blocked', array('before' => 'filter', function()

{

 return View::make('blocked');

}));

Attaching an "after" filter to a route:

Route::get('download', array('after' => 'log', function()

{

 //

}));

Attaching multiple filters to a route:

Route::get('create', array('before' => 'auth|csrf', function()

{

 //

}));

Passing parameters to filters:

Route::get('panel', array('before' => 'role:admin', function()

{

 //

}));

Pattern Filters

Sometimes you may want to attach a filter to all requests that begin with a given URI. For

example, you may want to attach the "auth" filter to all requests with URIs that begin with

"admin". Here's how to do it:

18

Defining a URI pattern based filter:

Route::filter('pattern: admin/*', 'auth');

Optionally you can register filters directly when attaching filters to a given URI by supplying

an array with the name of the filter and a callback.

Defining a filter and URI pattern based filter in one:

Route::filter('pattern: admin/*', array('name' => 'auth', function()

{

 //

}));

Global Filters

Laravel has two "global" filters that run before and after every request to your application.

You can find them both in the application/routes.php file. These filters make great places to

start common bundles or add global assets.

Note: The after filter receives the Response object for the current request.

Route Groups

Route groups allow you to attach a set of attributes to a group of routes, allowing you to

keep your code neat and tidy.

Route::group(array('before' => 'auth'), function()

{

 Route::get('panel', function()

 {

 //

 });

 Route::get('dashboard', function()

 {

 //

 });

});

Named Routes

Constantly generating URLs or redirects using a route's URI can cause problems when

routes are later changed. Assigning the route a name gives you a convenient way to refer to

19

the route throughout your application. When a route change occurs the generated links will

point to the new route with no further configuration needed.

Registering a named route:

Route::get('/', array('as' => 'home', function()

{

 return "Hello World";

}));

Generating a URL to a named route:

$url = URL::to_route('home');

Redirecting to the named route:

return Redirect::to_route('home');

Once you have named a route, you may easily check if the route handling the current

request has a given name.

Determine if the route handling the request has a given name:

if (Request::route()->is('home'))

{

 // The "home" route is handling the request!

}

HTTPS Routes

When defining routes, you may use the "https" attribute to indicate that the HTTPS protocol

should be used when generating a URL or Redirect to that route.

Defining an HTTPS route:

Route::get('login', array('https' => true, function()

{

 return View::make('login');

}));

Using the "secure" short-cut method:

Route::secure('GET', 'login', function()

{

 return View::make('login');

});

20

Bundle Routes

Bundles are Laravel's modular package system. Bundles can easily be configured to handle

requests to your application. We'll be going over bundles in more detail in another document.

For now, read through this section and just be aware that not only can routes be used to

expose functionality in bundles, but they can also be registered from within bundles.

Let's open the application/bundles.php file and add something:

Registering a bundle to handle routes:

return array(

 'admin' => array('handles' => 'admin'),

);

Notice the new handles option in our bundle configuration array? This tells Laravel to load

the Admin bundle on any requests where the URI begins with "admin".

Now you're ready to register some routes for your bundle, so create a routes.php file within

the root directory of your bundle and add the following:

Registering a root route for a bundle:

Route::get('(:bundle)', function()

{

 return 'Welcome to the Admin bundle!';

});

Let's explore this example. Notice the (:bundle) place-holder? That will be replaced with the

value of thehandles clause that you used to register your bundle. This keeps your

code D.R.Y. and allows those who use your bundle to change it's root URI without breaking

your routes! Nice, right?

Of course, you can use the (:bundle) place-holder for all of your routes, not just your root

route.

Registering bundle routes:

Route::get('(:bundle)/panel', function()

{

 return "I handle requests to admin/panel!";

});

Controller Routing

Controllers provide another way to manage your application logic. If you're unfamiliar with

controllers you may want to read about controllers and return to this section.

http://laravel.com/docs/bundles
http://en.wikipedia.org/wiki/Don't_repeat_yourself
http://laravel.com/docs/controllers

21

It is important to be aware that all routes in Laravel must be explicitly defined, including

routes to controllers. This means that controller methods that have not been exposed

through route registration cannot be accessed. It's possible to automatically expose all

methods within a controller using controller route registration. Controller route

registrations are typically defined in application/routes.php.

Most likely, you just want to register all of the controllers in your application's "controllers"

directory. You can do it in one simple statement. Here's how:

Register all controllers for the application:

Route::controller(Controller::detect());

The Controller::detect method simply returns an array of all of the controllers defined for the

application.

If you wish to automatically detect the controllers in a bundle, just pass the bundle name to

the method. If no bundle is specified, the application folder's controller directory will be

searched.

Note: It is important to note that this method gives you no control over the order in

which controllers are loaded. Controller::detect() should only be used to Route

controllers in very small sites. "Manually" routing controllers gives you much more

control, is more self-documenting, and is certainly advised.

Register all controllers for the "admin" bundle:

Route::controller(Controller::detect('admin'));

Registering the "home" controller with the Router:

Route::controller('home');

Registering several controllers with the router:

Route::controller(array('dashboard.panel', 'admin'));

Once a controller is registered, you may access its methods using a simple URI convention:

http://localhost/controller/method/arguments

This convention is similar to that employed by CodeIgniter and other popular frameworks,

where the first segment is the controller name, the second is the method, and the remaining

segments are passed to the method as arguments. If no method segment is present, the

"index" method will be used.

This routing convention may not be desirable for every situation, so you may also explicitly

route URIs to controller actions using a simple, intuitive syntax.

22

Registering a route that points to a controller action:

Route::get('welcome', 'home@index');

Registering a filtered route that points to a controller action:

Route::get('welcome', array('after' => 'log', 'uses' => 'home@index'));

Registering a named route that points to a controller action:

Route::get('welcome', array('as' => 'home.welcome', 'uses' => 'home@index'));

CLI Route Testing

You may test your routes using Laravel's "Artisan" CLI. Simple specify the request method

and URI you want to use. The route response will be var_dump'd back to the CLI.

Calling a route via the Artisan CLI:

php artisan route:call get api/user/1

CONTROLLERS

The Basics

Controllers are classes that are responsible for accepting user input and managing

interactions between models, libraries, and views. Typically, they will ask a model for data,

and then return a view that presents that data to the user.

The usage of controllers is the most common method of implementing application logic in

modern web-development. However, Laravel also empowers developers to implement their

application logic within routing declarations. This is explored in detail in the routing

document. New users are encouraged to start with controllers. There is nothing that route-

based application logic can do that controllers can't.

Controller classes should be stored in application/controllers and should extend the

Base_Controller class. A Home_Controller class is included with Laravel.

Creating a simple controller:

class Admin_Controller extends Base_Controller

{

http://laravel.com/docs/routing
http://laravel.com/docs/routing

23

 public function action_index()

 {

 //

 }

}

Actions are the name of controller methods that are intended to be web-accessible. Actions

should be prefixed with "action_". All other methods, regardless of scope, will not be web-

accessible.

Note: The Base_Controller class extends the main Laravel Controller class, and gives

you a convenient place to put methods that are common to many controllers.

Controller Routing

It is important to be aware that all routes in Laravel must be explicitly defined, including

routes to controllers.

This means that controller methods that have not been exposed through route

registration cannot be accessed. It's possible to automatically expose all methods within a

controller using controller route registration. Controller route registrations are typically

defined in application/routes.php.

Check the routing page for more information on routing to controllers.

Bundle Controllers

Bundles are Laravel's modular package system. Bundles can be easily configured to handle

requests to your application. We'll be going over bundles in more detail in another document.

Creating controllers that belong to bundles is almost identical to creating your application

controllers. Just prefix the controller class name with the name of the bundle, so if your

bundle is named "admin", your controller classes would look like this:

Creating a bundle controller class:

class Admin_Home_Controller extends Base_Controller

{

 public function action_index()

 {

 return "Hello Admin!";

 }

}

http://laravel.com/docs/routing#controller-routing
http://laravel.com/docs/bundles

24

But, how do you register a bundle controller with the router? It's simple. Here's what it

looks like:

Registering a bundle's controller with the router:

Route::controller('admin::home');

Great! Now we can access our "admin" bundle's home controller from the web!

Note: Throughout Laravel the double-colon syntax is used to denote bundles. More

information on bundles can be found in the bundle documentation.

Action Filters

Action filters are methods that can be run before or after a controller action. With Laravel

you don't only have control over which filters are assigned to which actions. But, you can

also choose which http verbs (post, get, put, and delete) will activate a filter.

You can assign "before" and "after" filters to controller actions within the controller's

constructor.

Attaching a filter to all actions:

$this->filter('before', 'auth');

In this example the 'auth' filter will be run before every action within this controller. The

auth action comes out-of-the-box with Laravel and can be found in application/routes.php.

The auth filter verifies that a user is logged in and redirects them to 'login' if they are not.

Attaching a filter to only some actions:

$this->filter('before', 'auth')->only(array('index', 'list'));

In this example the auth filter will be run before the action_index() or action_list() methods

are run. Users must be logged in before having access to these pages. However, no other

actions within this controller require an authenticated session.

Attaching a filter to all except a few actions:

$this->filter('before', 'auth')->except(array('add', 'posts'));

Much like the previous example, this declaration ensures that the auth filter is run on only

some of this controller's actions. Instead of declaring to which actions the filter applies we

are instead declaring the actions that will not require authenticated sessions. It can

sometimes be safer to use the 'except' method as it's possible to add new actions to this

controller and to forget to add them to only(). This could potentially lead your controller's

action being unintentionally accessible by users who haven't been authenticated.

http://laravel.com/docs/bundles

25

Attaching a filter to run on POST:

$this->filter('before', 'csrf')->on('post');

This example shows how a filter can be run only on a specific http verb. In this case we're

running the csrf filter only when a form post is made. The csrf filter is designed to prevent

form posts from other systems (spam bots for example) and comes by default with Laravel.

You can find the csrf filter in application/routes.php.

Further Reading:

 Route Filters

Nested Controllers

Controllers may be located within any number of sub-directories within the

main application/controllers folder.

Define the controller class and store it in controllers/admin/panel.php.

class Admin_Panel_Controller extends Base_Controller

{

 public function action_index()

 {

 //

 }

}

Register the nested controller with the router using "dot" syntax:

Route::controller('admin.panel');

Note: When using nested controllers, always register your controllers from most nested

to least nested in order to avoid shadowing controller routes.

Access the "index" action of the controller:

http://localhost/admin/panel

Controller Layouts

Full documentation on using layouts with Controllers can be found on the Templating page.

http://laravel.com/docs/routing#filters
http://laravel.com/docs/views/templating

26

RESTful Controllers

Instead of prefixing controller actions with "action_", you may prefix them with the HTTP

verb they should respond to.

Adding the RESTful property to the controller:

class Home_Controller extends Base_Controller

{

 public $restful = true;

}

Building RESTful controller actions:

class Home_Controller extends Base_Controller

{

 public $restful = true;

 public function get_index()

 {

 //

 }

 public function post_index()

 {

 //

 }

}

This is particularly useful when building CRUD methods as you can separate the logic

which populates and renders a form from the logic that validates and stores the results.

Dependency Injection

If you are focusing on writing testable code, you will probably want to inject dependencies

into the constructor of your controller. No problem. Just register your controller in the IoC

container. When registering the controller with the container, prefix the key with controller.

So, in our application/start.php file, we could register our user controller like so:

IoC::register('controller: user', function()

{

 return new User_Controller;

});

http://laravel.com/docs/ioc
http://laravel.com/docs/ioc

27

When a request to a controller enters your application, Laravel will automatically determine

if the controller is registered in the container, and if it is, will use the container to resolve

an instance of the controller.

Note: Before diving into controller dependency injection, you may wish to read the

documentation on Laravel's beautiful IoC container.

Controller Factory

If you want even more control over the instantiation of your controllers, such as using a

third-party IoC container, you'll need to use the Laravel controller factory.

Register an event to handle controller instantiation:

Event::listen(Controller::factory, function($controller)

{

 return new $controller;

});

The event will receive the class name of the controller that needs to be resolved. All you

need to do is return an instance of the controller.

MODELS & LIBRARIES

Models

Models are the heart of your application. Your application logic (controllers / routes) and

views (html) are just the mediums with which users interact with your models. The most

typical type of logic contained within a model isBusiness Logic.

Some examples of functionality that would exist within a model are:

 Database Interactions

 File I/O

 Interactions with Web Services

For instance, perhaps you are writing a blog. You will likely want to have a "Post" model.

Users may want to comment on posts so you'd also have a "Comment" model. If users are

going to be commenting then we'll also need a "User" model. Get the idea?

http://laravel.com/docs/ioc
http://en.wikipedia.org/wiki/Business_logic

28

Libraries

Libraries are classes that perform tasks that aren't specific to your application. For

instance, consider a PDF generation library that converts HTML. That task, although

complicated, is not specific to your application, so it is considered a "library".

Creating a library is as easy as creating a class and storing it in the libraries folder. In the

following example, we will create a simple library with a method that echos the text that is

passed to it. We create the printer.php file in the libraries folder with the following code.

<?php

class Printer {

 public static function write($text) {

 echo $text;

 }

}

You can now call Printer::write('this text is being echod from the write method!') from

anywhere within your application.

Auto Loading

Libraries and Models are very easy to use thanks to the Laravel auto-loader. To learn more

about the auto-loader check out the documentation on Auto-Loading.

Best Practices

We've all head the mantra: "controllers should be thin!" But, how do we apply that in real

life? It's possible that part of the problem is the word "model". What does it even mean? Is it

even a useful term? Many associate "model" with "database", which leads to having very

bloated controllers, with light models that access the database. Let's explore some

alternatives.

What if we just totally scrapped the "models" directory? Let's name it something more

useful. In fact, let's just give it the same as our application. Perhaps are our satellite

tracking site is named "Trackler", so let's create a "trackler" directory within the application

folder.

Great! Next, let's break our classes into "entities", "services", and "repositories". So, we'll

create each of those three directories within our "trackler" folder. Let's explore each one:

http://laravel.com/docs/loading

29

Entities

Think of entities as the data containers of your application. They primarily just contain

properties. So, in our application, we may have a "Location" entity which has "latitude" and

"longitude" properties. It could look something like this:

<?php namespace Trackler\Entities;

class Location {

 public $latitude;

 public $longitude;

 public function __construct($latitude, $longitude)

 {

 $this->latitude = $latitude;

 $this->longitude = $longitude;

 }

}

Looking good. Now that we have an entity, let's explore our other two folders.

Services

Services contain the processes of your application. So, let's keep using our Trackler example.

Our application might have a form on which a user may enter their GPS location. However,

we need to validate that the coordinates are correctly formatted. We need

to validate the location entity. So, within our "services" directory, we could create a "validators"

folder with the following class:

<?php namespace Trackler\Services\Validators;

use Trackler\Entities\Location;

class Location_Validator {

 public static function validate(Location $location)

 {

 // Validate the location instance...

 }

}

Great! Now we have a great way to test our validation in isolation from our controllers and

routes! So, we've validated the location and we're ready to store it. What do we do now?

30

Repositories

Repositories are the data access layer of your application. They are responsible for storing

and retrieving theentities of your application. So, let's continue using our location entity in

this example. We need a location repository that can store them. We could store them using

any mechanism we want, whether that is a relational database, Redis, or the next storage

hotness. Let's look at an example:

<?php namespace Trackler\Repositories;

use Trackler\Entities\Location;

class Location_Repository {

 public function save(Location $location, $user_id)

 {

 // Store the location for the given user ID...

 }

}

Now we have a clean separation of concerns between our application's entities, services,

and repositories. This means we can inject stub repositories into our services or controllers,

and test those pieces of our application in isolation from the database. Also, we can entirely

switch data store technologies without affecting our services, entities, or controllers. We've

achieved a good separation of concerns.

Further Reading:

 IoC Container

VIEWS & RESPONSES

The Basics

Views contain the HTML that is sent to the person using your application. By separating

your view from the business logic of your application, your code will be cleaner and easier

to maintain.

All views are stored within the application/views directory and use the PHP file extension.

The View class provides a simple way to retrieve your views and return them to the client.

Let's look at an example!

http://laravel.com/docs/ioc

31

Creating the view:

<html>

 I'm stored in views/home/index.php!

</html>

Returning the view from a route:

Route::get('/', function()

{

 return View::make('home.index');

});

Returning the view from a controller:

public function action_index()

{

 return View::make('home.index');

});

Determining if a view exists:

$exists = View::exists('home.index');

Sometimes you will need a little more control over the response sent to the browser. For

example, you may need to set a custom header on the response, or change the HTTP status

code. Here's how:

Returning a custom response:

Route::get('/', function()

{

 $headers = array('foo' => 'bar');

 return Response::make('Hello World!', 200, $headers);

});

Returning a custom response containing a view, with binding data:

return Response::view('home', array('foo' => 'bar'));

Returning a JSON response:

return Response::json(array('name' => 'Batman'));

32

Returning Eloquent models as JSON:

return Response::eloquent(User::find(1));

Binding Data To Views

Typically, a route or controller will request data from a model that the view needs to display.

So, we need a way to pass the data to the view. There are several ways to accomplish this,

so just pick the way that you like best!

Binding data to a view:

Route::get('/', function()

{

 return View::make('home')->with('name', 'James');

});

Accessing the bound data within a view:

<html>

 Hello, <?php echo $name; ?>.

</html>

Chaining the binding of data to a view:

View::make('home')

 ->with('name', 'James')

 ->with('votes', 25);

Passing an array of data to bind data:

View::make('home', array('name' => 'James'));

Using magic methods to bind data:

$view->name = 'James';

$view->email = 'example@example.com';

Using the ArrayAccess interface methods to bind data:

$view['name'] = 'James';

$view['email'] = 'example@example.com';

33

Nesting Views

Often you will want to nest views within views. Nested views are sometimes called "partials",

and help you keep views small and modular.

Binding a nested view using the "nest" method:

View::make('home')->nest('footer', 'partials.footer');

Passing data to a nested view:

$view = View::make('home');

$view->nest('content', 'orders', array('orders' => $orders));

Sometimes you may wish to directly include a view from within another view. You can use

the render helper function:

Using the "render" helper to display a view:

<div class="content">

 <?php echo render('user.profile'); ?>

</div>

It is also very common to have a partial view that is responsible for display an instance of

data in a list. For example, you may create a partial view responsible for displaying the

details about a single order. Then, for example, you may loop through an array of orders,

rendering the partial view for each order. This is made simpler using the render_each helper:

Rendering a partial view for each item in an array:

<div class="orders">

 <?php echo render_each('partials.order', $orders, 'order');

</div>

The first argument is the name of the partial view, the second is the array of data, and the

third is the variable name that should be used when each array item is passed to the partial

view.

Named Views

Named views can help to make your code more expressive and organized. Using them is

simple:

Registering a named view:

View::name('layouts.default', 'layout');

34

Getting an instance of the named view:

return View::of('layout');

Binding data to a named view:

return View::of('layout', array('orders' => $orders));

View Composers

Each time a view is created, its "composer" event will be fired. You can listen for this event

and use it to bind assets and common data to the view each time it is created. A common

use-case for this functionality is a side-navigation partial that shows a list of random blog

posts. You can nest your partial view by loading it in your layout view. Then, define a

composer for that partial. The composer can then query the posts table and gather all of the

necessary data to render your view. No more random logic strewn about! Composers are

typically defined in application/routes.php. Here's an example:

Register a view composer for the "home" view:

View::composer('home', function($view)

{

 $view->nest('footer', 'partials.footer');

});

Now each time the "home" view is created, an instance of the View will be passed to the

registered Closure, allowing you to prepare the view however you wish.

Register a composer that handles multiple views:

View::composer(array('home', 'profile'), function($view)

{

 //

});

Note: A view can have more than one composer. Go wild!

Redirects

It's important to note that both routes and controllers require responses to be returned with

the 'return' directive. Instead of calling "Redirect::to()"" where you'd like to redirect the user.

You'd instead use "return Redirect::to()". This distinction is important as it's different than

most other PHP frameworks and it could be easy to accidentally overlook the importance of

this practice.

35

Redirecting to another URI:

return Redirect::to('user/profile');

Redirecting with a specific status:

return Redirect::to('user/profile', 301);

Redirecting to a secure URI:

return Redirect::to_secure('user/profile');

Redirecting to the root of your application:

return Redirect::home();

Redirecting back to the previous action:

return Redirect::back();

Redirecting to a named route:

return Redirect::to_route('profile');

Redirecting to a controller action:

return Redirect::to_action('home@index');

Sometimes you may need to redirect to a named route, but also need to specify the values

that should be used instead of the route's URI wildcards. It's easy to replace the wildcards

with proper values:

Redirecting to a named route with wildcard values:

return Redirect::to_route('profile', array($username));

Redirecting to an action with wildcard values:

return Redirect::to_action('user@profile', array($username));

36

Redirecting With Flash Data

After a user creates an account or signs into your application, it is common to display a

welcome or status message. But, how can you set the status message so it is available for

the next request? Use the with() method to send flash data along with the redirect response.

return Redirect::to('profile')->with('status', 'Welcome Back!');

You can access your message from the view with the Session get method:

$status = Session::get('status');

Further Reading:

 Sessions

Downloads

Sending a file download response:

return Response::download('file/path.jpg');

Sending a file download and assigning a file name:

return Response::download('file/path.jpg', 'photo.jpg');

Errors

To generating proper error responses simply specify the response code that you wish to

return. The corresponding view stored in views/error will automatically be returned.

Generating a 404 error response:

return Response::error('404');

Generating a 500 error response:

return Response::error('500');

http://laravel.com/docs/session/config

37

INPUT & COOKIES

Input

The Input class handles input that comes into your application via GET, POST, PUT, or

DELETE requests. Here are some examples of how to access input data using the Input

class:

Retrieve a value from the input array:

$email = Input::get('email');

Note: The "get" method is used for all request types (GET, POST, PUT, and DELETE),

not just GET requests.

Retrieve all input from the input array:

$input = Input::get();

Retrieve all input including the $_FILES array:

$input = Input::all();

By default, null will be returned if the input item does not exist. However, you may pass a

different default value as a second parameter to the method:

Returning a default value if the requested input item doesn't exist:

$name = Input::get('name', 'Fred');

Using a Closure to return a default value:

$name = Input::get('name', function() {return 'Fred';});

Determining if the input contains a given item:

if (Input::has('name')) ...

Note: The "has" method will return false if the input item is an empty string.

38

JSON Input

When working with JavaScript MVC frameworks like Backbone.js, you will need to get the

JSON posted by the application. To make your life easier, we've included

the Input::json method:

Get JSON input to the application:

$data = Input::json();

Files

Retrieving all items from the $_FILES array:

$files = Input::file();

Retrieving an item from the $_FILES array:

$picture = Input::file('picture');

Retrieving a specific item from a $_FILES array:

$size = Input::file('picture.size');

Old Input

You'll commonly need to re-populate forms after invalid form submissions. Laravel's Input

class was designed with this problem in mind. Here's an example of how you can easily

retrieve the input from the previous request. First, you need to flash the input data to the

session:

Flashing input to the session:

Input::flash();

Flashing selected input to the session:

Input::flash('only', array('username', 'email'));

Input::flash('except', array('password', 'credit_card'));

Retrieving a flashed input item from the previous request:

$name = Input::old('name');

39

Note: You must specify a session driver before using the "old" method.

Further Reading:

 Sessions

Redirecting With Old Input

Now that you know how to flash input to the session. Here's a shortcut that you can use

when redirecting that prevents you from having to micro-manage your old input in that

way:

Flashing input from a Redirect instance:

return Redirect::to('login')->with_input();

Flashing selected input from a Redirect instance:

return Redirect::to('login')->with_input('only', array('username'));

return Redirect::to('login')->with_input('except', array('password'));

Cookies

Laravel provides a nice wrapper around the $_COOKIE array. However, there are a few

things you should be aware of before using it. First, all Laravel cookies contain a "signature

hash". This allows the framework to verify that the cookie has not been modified on the

client. Secondly, when setting cookies, the cookies are not immediately sent to the browser,

but are pooled until the end of the request and then sent together. This means that you will

not be able to both set a cookie and retrieve the value that you set in the same request.

Retrieving a cookie value:

$name = Cookie::get('name');

Returning a default value if the requested cookie doesn't exist:

$name = Cookie::get('name', 'Fred');

Setting a cookie that lasts for 60 minutes:

Cookie::put('name', 'Fred', 60);

http://laravel.com/docs/session/config

40

Creating a "permanent" cookie that lasts five years:

Cookie::forever('name', 'Fred');

Deleting a cookie:

Cookie::forget('name');

Merging & Replacing

Sometimes you may wish to merge or replace the current input. Here's how:

Merging new data into the current input:

Input::merge(array('name' => 'Spock'));

Replacing the entire input array with new data:

Input::replace(array('doctor' => 'Bones', 'captain' => 'Kirk'));

Clearing Input

To clear all input data for the current request, you may use the clear method:

Input::clear();

BUNDLES

The Basics

Bundles are the heart of the improvements that were made in Laravel 3.0. They are a

simple way to group code into convenient "bundles". A bundle can have it's own views,

configuration, routes, migrations, tasks, and more. A bundle could be everything from a

database ORM to a robust authentication system. Modularity of this scope is an important

aspect that has driven virtually all design decisions within Laravel. In many ways you can

actually think of the application folder as the special default bundle with which Laravel is

pre-programmed to load and use.

41

Creating Bundles

The first step in creating a bundle is to create a folder for the bundle within

your bundles directory. For this example, let's create an "admin" bundle, which could house

the administrator back-end to our application. Theapplication/start.php file provides some

basic configuration that helps to define how our application will run. Likewise we'll create

a start.php file within our new bundle folder for the same purpose. It is run every time the

bundle is loaded. Let's create it:

Creating a bundle start.php file:

<?php

Autoloader::namespaces(array(

 'Admin' => Bundle::path('admin').'models',

));

In this start file we've told the auto-loader that classes that are namespaced to "Admin"

should be loaded out of our bundle's models directory. You can do anything you want in

your start file, but typically it is used for registering classes with the auto-loader. In fact,

you aren't required to create a start file for your bundle.

Next, we'll look at how to register this bundle with our application!

Registering Bundles

Now that we have our admin bundle, we need to register it with Laravel. Pull open

yourapplication/bundles.php file. This is where you register all bundles used by your

application. Let's add ours:

Registering a simple bundle:

return array('admin'),

By convention, Laravel will assume that the Admin bundle is located at the root level of the

bundle directory, but we can specify another location if we wish:

Registering a bundle with a custom location:

return array(

 'admin' => array('location' => 'userscape/admin'),

);

Now Laravel will look for our bundle in bundles/userscape/admin.

42

Bundles & Class Loading

Typically, a bundle's start.php file only contains auto-loader registrations. So, you may want

to just skipstart.php and declare your bundle's mappings right in its registration array.

Here's how:

Defining auto-loader mappings in a bundle registration:

return array(

 'admin' => array(

 'autoloads' => array(

 'map' => array(

 'Admin' => '(:bundle)/admin.php',

),

 'namespaces' => array(

 'Admin' => '(:bundle)/lib',

),

 'directories' => array(

 '(:bundle)/models',

),

),

),

);

Notice that each of these options corresponds to a function on the Laravel auto-loader. In

fact, the value of the option will automatically be passed to the corresponding function on

the auto-loader.

You may have also noticed the (:bundle) place-holder. For convenience, this will

automatically be replaced with the path to the bundle. It's a piece of cake.

Starting Bundles

So our bundle is created and registered, but we can't use it yet. First, we need to start it:

Starting a bundle:

Bundle::start('admin');

This tells Laravel to run the start.php file for the bundle, which will register its classes in the

auto-loader. The start method will also load the routes.php file for the bundle if it is present.

Note: The bundle will only be started once. Subsequent calls to the start method will be

ignored.

http://laravel.com/docs/loading

43

If you use a bundle throughout your application, you may want it to start on every request.

If this is the case, you can configure the bundle to auto-start in

your application/bundles.php file:

Configuration a bundle to auto-start:

return array(

 'admin' => array('auto' => true),

);

You do not always need to explicitly start a bundle. In fact, you can usually code as if the

bundle was auto-started and Laravel will take care of the rest. For example, if you attempt

to use a bundle views, configurations, languages, routes or filters, the bundle will

automatically be started!

Each time a bundle is started, it fires an event. You can listen for the starting of bundles

like so:

Listen for a bundle's start event:

Event::listen('laravel.started: admin', function()

{

 // The "admin" bundle has started...

});

It is also possible to "disable" a bundle so that it will never be started.

Disabling a bundle so it can't be started:

Bundle::disable('admin');

Routing To Bundles

Refer to the documentation on bundle routing and bundle controllers for more information on

routing and bundles.

Using Bundles

As mentioned previously, bundles can have views, configuration, language files and more.

Laravel uses a double-colon syntax for loading these items. So, let's look at some examples:

Loading a bundle view:

return View::make('bundle::view');

http://laravel.com/docs/routing#bundle-routes
http://laravel.com/docs/controllers#bundle-controllers

44

Loading a bundle configuration item:

return Config::get('bundle::file.option');

Loading a bundle language line:

return Lang::line('bundle::file.line');

Sometimes you may need to gather more "meta" information about a bundle, such as

whether it exists, its location, or perhaps its entire configuration array. Here's how:

Determine whether a bundle exists:

Bundle::exists('admin');

Retrieving the installation location of a bundle:

$location = Bundle::path('admin');

Retrieving the configuration array for a bundle:

$config = Bundle::get('admin');

Retrieving the names of all installed bundles:

$names = Bundle::names();

Bundle Assets

If your bundle contains views, it is likely you have assets such as JavaScript and images

that need to be available in the public directory of the application. No problem. Just

create public folder within your bundle and place all of your assets in this folder.

Great! But, how do they get into the application's public folder. The Laravel "Artisan"

command-line provides a simple command to copy all of your bundle's assets to the public

directory. Here it is:

Publish bundle assets into the public directory:

php artisan bundle:publish

This command will create a folder for the bundle's assets within the

application's public/bundles directory. For example, if your bundle is named "admin",

a public/bundles/admin folder will be created, which will contain all of the files in your

bundle's public folder.

45

For more information on conveniently getting the path to your bundle assets once they are

in the public directory, refer to the documentation on asset management.

Installing Bundles

Of course, you may always install bundles manually; however, the "Artisan" CLI provides an

awesome method of installing and upgrading your bundle. The framework uses simple Zip

extraction to install the bundle. Here's how it works.

Installing a bundle via Artisan:

php artisan bundle:install eloquent

Great! Now that you're bundle is installed, you're ready to register it and publish its assets.

Need a list of available bundles? Check out the Laravel bundle directory

Upgrading Bundles

When you upgrade a bundle, Laravel will automatically remove the old bundle and install a

fresh copy.

Upgrading a bundle via Artisan:

php artisan bundle:upgrade eloquent

Note: After upgrading the bundle, you may need to re-publish its assets.

Important: Since the bundle is totally removed on an upgrade, you must be aware of any

changes you have made to the bundle code before upgrading. You may need to change

some configuration options in a bundle. Instead of modifying the bundle code directly, use

the bundle start events to set them. Place something like this in

your application/start.php file.

Listening for a bundle's start event:

Event::listen('laravel.started: admin', function()

{

 Config::set('admin::file.option', true);

});

http://laravel.com/docs/views/assets#bundle-assets
http://laravel.com/docs/bundles#registering-bundles
http://laravel.com/docs/bundles#bundle-assets
http://bundles.laravel.com/
http://laravel.com/docs/bundles#bundle-assets

46

CLASS AUTO LOADING

The Basics

Auto-loading allows you to lazily load class files when they are needed without

explicitly requiring or includingthem. So, only the classes you actually need are loaded for any

given request to your application, and you can just jump right in and start using any class

without loading it's related file.

By default, the models and libraries directories are registered with the auto-loader in

the application/start.phpfile. The loader uses a class to file name loading convention, where

all file names are lower-cased. So for instance, a "User" class within the models directory

should have a file name of "user.php". You may also nest classes within sub-directories.

Just namespace the classes to match the directory structure. So, a "Entities\User" class

would have a file name of "entities/user.php" within the models directory.

Registering Directories

As noted above, the models and libraries directories are registered with the auto-loader by

default; however, you may register any directories you like to use the same class to file

name loading conventions:

Registering directories with the auto-loader:

Autoloader::directories(array(

 path('app').'entities',

 path('app').'repositories',

));

Registering Mappings

Sometimes you may wish to manually map a class to its related file. This is the most

performant way of loading classes:

Registering a class to file mapping with the auto-loader:

Autoloader::map(array(

 'User' => path('app').'models/user.php',

 'Contact' => path('app').'models/contact.php',

));

47

Registering Namespaces

Many third-party libraries use the PSR-0 standard for their structure. PSR-0 states that

class names should match their file names, and directory structure is indicated by

namespaces. If you are using a PSR-0 library, just register it's root namespace and

directory with the auto-loader:

Registering a namespace with the auto-loader:

Autoloader::namespaces(array(

 'Doctrine' => path('libraries').'Doctrine',

));

Before namespaces were available in PHP, many projects used underscores to indicate

directory structure. If you are using one of these legacy libraries, you can still easily register

it with the auto-loader. For example, if you are using SwiftMailer, you may have noticed all

classes begin with "Swift_". So, we'll register "Swift" with the auto-loader as the root of an

underscored project.

Registering an "underscored" library with the auto-loader:

Autoloader::underscored(array(

 'Swift' => path('libraries').'SwiftMailer',

));

ERRORS & LOGGING

Basic Configuration

All of the configuration options regarding errors and logging live in

the application/config/errors.php file. Let's jump right in.

Ignored Errors

The ignore option contains an array of error levels that should be ignored by Laravel. By

"ignored", we mean that we won't stop execution of the script on these errors. However, they

will be logged when logging is enabled.

Error Detail

The detail option indicates if the framework should display the error message and stack

trace when an error occurs. For development, you will want this to be true. However, in a

production environment, set this to false. When disabled, the view located

48

in application/views/error/500.php will be displayed, which contains a generic error

message.

Logging

To enable logging, set the log option in the error configuration to "true". When enabled, the

Closure defined by the logger configuration item will be executed when an error occurs. This

gives you total flexibility in how the error should be logged. You can even e-mail the errors

to your development team!

By default, logs are stored in the storage/logs directory, and a new log file is created for each

day. This keeps your log files from getting crowded with too many messages.

The Logger Class

Sometimes you may wish to use Laravel's Log class for debugging, or just to log

informational messages. Here's how to use it:

Writing a message to the logs:

Log::write('info', 'This is just an informational message!');

Using magic methods to specify the log message type:

Log::info('This is just an informational message!');

RUNTIME CONFIGURATION

The Basics

Sometimes you may need to get and set configuration options at runtime. For this you'll use

the Config class, which utilizes Laravel's "dot" syntax for accessing configuration files and

items.

Retrieving Options

Retrieve a configuration option:

$value = Config::get('application.url');

49

Return a default value if the option doesn't exist:

$value = Config::get('application.timezone', 'UTC');

Retrieve an entire configuration array:

$options = Config::get('database');

Setting Options

Set a configuration option:

Config::set('cache.driver', 'apc');

EXAMINING REQUESTS

Working With The URI

Getting the current URI for the request:

echo URI::current();

Getting a specific segment from the URI:

echo URI::segment(1);

Returning a default value if the segment doesn't exist:

echo URI::segment(10, 'Foo');

Getting the full request URI, including query string:

echo URI::full();

Sometimes you may need to determine if the current URI is a given string, or begins with a

given string. Here's an example of how you can use the is() method to accomplish this:

50

Determine if the URI is "home":

if (URI::is('home'))

{

 // The current URI is "home"!

}

Determine if the current URI begins with "docs/":

if URI::is('docs/*'))

{

 // The current URI begins with "docs/"!

}

Other Request Helpers

Getting the current request method:

echo Request::method();

Accessing the $_SERVER global array:

echo Request::server('http_referer');

Retrieving the requester's IP address:

echo Request::ip();

Determining if the current request is using HTTPS:

if (Request::secure())

{

 // This request is over HTTPS!

}

Determining if the current request is an AJAX request:

if (Request::ajax())

{

 // This request is using AJAX!

}

Determining if the current requst is via the Artisan CLI:

if (Request::cli())

{

51

 // This request came from the CLI!

}

GENERATING URLS

The Basics

Retrieving the application's base URL:

$url = URL::base();

Generating a URL relative to the base URL:

$url = URL::to('user/profile');

Generating a HTTPS URL:

$url = URL::to_secure('user/login');

Retrieving the current URL:

$url = URL::current();

Retrieving the current URL including query string:

$url = URL::full();

URLs To Routes

Generating a URL to a named route:

$url = URL::to_route('profile');

Sometimes you may need to generate a URL to a named route, but also need to specify the

values that should be used instead of the route's URI wildcards. It's easy to replace the

wildcards with proper values:

52

Generating a URL to a named route with wildcard values:

$url = URL::to_route('profile', array($username));

Further Reading:

 Named Routes

URLs To Controller Actions

Generating a URL to a controller action:

$url = URL::to_action('user@profile');

Generating a URL to an action with wildcard values:

$url = URL::to_action('user@profile', array($username));

URLs To Assets

URLs generated for assets will not contain the "application.index" configuration option.

Generating a URL to an asset:

$url = URL::to_asset('js/jquery.js');

URL Helpers

There are several global functions for generating URLs designed to make your life easier and

your code cleaner:

Generating a URL relative to the base URL:

$url = url('user/profile');

Generating a URL to an asset:

$url = asset('js/jquery.js');

Generating a URL to a named route:

$url = route('profile');

http://laravel.com/docs/routing#named-routes

53

Generating a URL to a named route with wildcard values:

$url = route('profile', array($username));

Generating a URL to a controller action:

$url = action('user@profile');

Generating a URL to an action with wildcard values:

$url = action('user@profile', array($username));

EVENTS

The Basics

Events can provide a great away to build de-coupled applications, and allow plug-ins to tap

into the core of your application without modifying its code.

Firing Events

To fire an event, just tell the Event class the name of the event you want to fire:

Firing an event:

$responses = Event::fire('loaded');

Notice that we assigned the result of the fire method to a variable. This method will return

an array containing the responses of all the event's listeners.

Sometimes you may want to fire an event, but just get the first response. Here's how:

Firing an event and retrieving the first response:

$response = Event::first('loaded');

Note: The first method will still fire all of the handlers listening to the event, but will

only return the first response.

54

The Event::until method will execute the event handlers until the first non-null response is

returned.

Firing an event until the first non-null response:

$response = Event::until('loaded');

Listening To Events

So, what good are events if nobody is listening? Register an event handler that will be called

when an event fires:

Registering an event handler:

Event::listen('loaded', function()

{

 // I'm executed on the "loaded" event!

});

The Closure we provided to the method will be executed each time the "loaded" event is

fired.

Queued Events

Sometimes you may wish to "queue" an event for firing, but not fire it immediately. This is

possible using the queue and flush methods. First, throw an event on a given queue with a

unique identifier:

Registering a queued event:

Event::queue('foo', $user->id, array($user));

This method accepts three parameters. The first is the name of the queue, the second is a

unique identifier for this item on the queue, and the third is an array of data to pass to the

queue flusher.

Next, we'll register a flusher for the foo queue:

Registering an event flusher:

Event::flusher('foo', function($key, $user)

{

 //

});

55

Note that the event flusher receives two arguments. The first, is the unique identifier for the

queued event, which in this case would be the user's ID. The second (and any remaining)

parameters would be the payload items for the queued event.

Finally, we can run our flusher and flush all queued events using the flush method:

Event::flush('foo');

Laravel Events

There are several events that are fired by the Laravel core. Here they are:

Event fired when a bundle is started:

Event::listen('laravel.started: bundle', function() {});

Event fired when a database query is executed:

Event::listen('laravel.query', function($sql, $bindings, $time) {});

Event fired right before response is sent to browser:

Event::listen('laravel.done', function($response) {});

Event fired when a messaged is logged using the Log class:

Event::listen('laravel.log', function($type, $message) {});

VALIDATION

The Basics

Almost every interactive web application needs to validate data. For instance, a registration

form probably requires the password to be confirmed. Maybe the e-mail address must be

unique. Validating data can be a cumbersome process. Thankfully, it isn't in Laravel. The

Validator class provides an awesome array of validation helpers to make validating your

data a breeze. Let's walk through an example:

56

Get an array of data you want to validate:

$input = Input::all();

Define the validation rules for your data:

$rules = array(

 'name' => 'required|max:50',

 'email' => 'required|email|unique:users',

);

Create a Validator instance and validate the data:

$validation = Validator::make($input, $rules);

if ($validation->fails())

{

 return $validation->errors;

}

With the errors property, you can access a simple message collector class that makes

working with your error messages a piece of cake. Of course, default error messages have

been setup for all validation rules. The default messages live at language/en/validation.php.

Now you are familiar with the basic usage of the Validator class. You're ready to dig in and

learn about the rules you can use to validate your data!

Validation Rules

 Required

 Alpha, Alpha Numeric, & Alpha Dash

 Size

 Numeric

 Inclusion & Exclusion

 Confirmation

 Acceptance

 Same & Different

 Regular Expression Match

 Uniqueness & Existence

 Dates

 E-Mail Addresses

 URLs

 Uploads

http://laravel.com/docs/validation#rule-required
http://laravel.com/docs/validation#rule-alpha
http://laravel.com/docs/validation#rule-size
http://laravel.com/docs/validation#rule-numeric
http://laravel.com/docs/validation#rule-in
http://laravel.com/docs/validation#rule-confirmation
http://laravel.com/docs/validation#rule-acceptance
http://laravel.com/docs/validation#same-and-different
http://laravel.com/docs/validation#regex-match
http://laravel.com/docs/validation#rule-unique
http://laravel.com/docs/validation#dates
http://laravel.com/docs/validation#rule-email
http://laravel.com/docs/validation#rule-url
http://laravel.com/docs/validation#rule-uploads

57

Required

Validate that an attribute is present and is not an empty string:

'name' => 'required'

Validate that an attribute is present, when another attribute is present:

'last_name' => 'required_with:first_name'

Alpha, Alpha Numeric, & Alpha Dash

Validate that an attribute consists solely of letters:

'name' => 'alpha'

Validate that an attribute consists of letters and numbers:

'username' => 'alpha_num'

Validate that an attribute only contains letters, numbers, dashes, or underscores:

'username' => 'alpha_dash'

Size

Validate that an attribute is a given length, or, if an attribute is numeric, is a given

value:

'name' => 'size:10'

Validate that an attribute size is within a given range:

'payment' => 'between:10,50'

Note: All minimum and maximum checks are inclusive.

Validate that an attribute is at least a given size:

'payment' => 'min:10'

Validate that an attribute is no greater than a given size:

'payment' => 'max:50'

58

Numeric

Validate that an attribute is numeric:

'payment' => 'numeric'

Validate that an attribute is an integer:

'payment' => 'integer'

Inclusion & Exclusion

Validate that an attribute is contained in a list of values:

'size' => 'in:small,medium,large'

Validate that an attribute is not contained in a list of values:

'language' => 'not_in:cobol,assembler'

Confirmation

The confirmed rule validates that, for a given attribute, a

matching attribute_confirmation attribute exists.

Validate that an attribute is confirmed:

'password' => 'confirmed'

Given this example, the Validator will make sure that the password attribute matches

the password_confirmationattribute in the array being validated.

Acceptance

The accepted rule validates that an attribute is equal to yes or 1. This rule is helpful for

validating checkbox form fields such as "terms of service".

Validate that an attribute is accepted:

'terms' => 'accepted'

Same & Different

Validate that an attribute matches another attribute:

'token1' => 'same:token2'

59

Validate that two attributes have different values:

'password' => 'different:old_password',

Regular Expression Match

The match rule validates that an attribute matches a given regular expression.

Validate that an attribute matches a regular expression:

'username' => 'match:/[a-z]+/';

Uniqueness & Existence

Validate that an attribute is unique on a given database table:

'email' => 'unique:users'

In the example above, the email attribute will be checked for uniqueness on the users table.

Need to verify uniqueness on a column name other than the attribute name? No problem:

Specify a custom column name for the unique rule:

'email' => 'unique:users,email_address'

Many times, when updating a record, you want to use the unique rule, but exclude the row

being updated. For example, when updating a user's profile, you may allow them to change

their e-mail address. But, when theunique rule runs, you want it to skip the given user since

they may not have changed their address, thus causing the unique rule to fail. It's easy:

Forcing the unique rule to ignore a given ID:

'email' => 'unique:users,email_address,10'

Validate that an attribute exists on a given database table:

'state' => 'exists:states'

Specify a custom column name for the exists rule:

'state' => 'exists:states,abbreviation'

Dates

Validate that a date attribute is before a given date:

'birthdate' => 'before:1986-28-05';

60

Validate that a date attribute is after a given date:

'birthdate' => 'after:1986-28-05';

Note: The before and after validation rules use the strtotime PHP function to convert

your date to something the rule can understand.

E-Mail Addresses

Validate that an attribute is an e-mail address:

'address' => 'email'

Note: This rule uses the PHP built-in filter_var method.

URLs

Validate that an attribute is a URL:

'link' => 'url'

Validate that an attribute is an active URL:

'link' => 'active_url'

Note: The active_url rule uses checkdnsr to verify the URL is active.

Uploads

The mimes rule validates that an uploaded file has a given MIME type. This rule uses the

PHP Fileinfo extension to read the contents of the file and determine the actual MIME type.

Any extension defined in the config/mimes.phpfile may be passed to this rule as a parameter:

Validate that a file is one of the given types:

'picture' => 'mimes:jpg,gif'

Note: When validating files, be sure to use Input::file() or Input::all() to gather the input.

Validate that a file is an image:

'picture' => 'image'

61

Validate that a file is no more than a given size in kilobytes:

'picture' => 'image|max:100'

Retrieving Error Messages

Laravel makes working with your error messages a cinch using a simple error collector

class. After calling thepasses or fails method on a Validator instance, you may access the

errors via the errors property. The error collector has several simple functions for retrieving

your messages:

Determine if an attribute has an error message:

if ($validation->errors->has('email'))

{

 // The e-mail attribute has errors...

}

Retrieve the first error message for an attribute:

echo $validation->errors->first('email');

Sometimes you may need to format the error message by wrapping it in HTML. No problem.

Along with the :message place-holder, pass the format as the second parameter to the

method.

Format an error message:

echo $validation->errors->first('email', '<p>:message</p>');

Get all of the error messages for a given attribute:

$messages = $validation->errors->get('email');

Format all of the error messages for an attribute:

$messages = $validation->errors->get('email', '<p>:message</p>');

Get all of the error messages for all attributes:

$messages = $validation->errors->all();

Format all of the error messages for all attributes:

$messages = $validation->errors->all('<p>:message</p>');

62

Validation Walkthrough

Once you have performed your validation, you need an easy way to get the errors back to

the view. Laravel makes it amazingly simple. Let's walk through a typical scenario. We'll

define two routes:

Route::get('register', function()

{

 return View::make('user.register');

});

Route::post('register', function()

{

 $rules = array(...);

 $validation = Validator::make(Input::all(), $rules);

 if ($validation->fails())

 {

 return Redirect::to('register')->with_errors($validation);

 }

});

Great! So, we have two simple registration routes. One to handle displaying the form, and

one to handle the posting of the form. In the POST route, we run some validation over the

input. If the validation fails, we redirect back to the registration form and flash the

validation errors to the session so they will be available for us to display.

But, notice we are not explicitly binding the errors to the view in our GET route. However, an

errors variable ($errors) will still be available in the view. Laravel intelligently determines if

errors exist in the session, and if they do, binds them to the view for you. If no errors exist

in the session, an empty message container will still be bound to the view. In your views,

this allows you to always assume you have a message container available via the errors

variable. We love making your life easier.

For example, if email address validation failed, we can look for 'email' within the $errors

session var.

$errors->has('email')

Using Blade, we can then conditionally add error messages to our view.

{{ $errors->has('email') ? 'Invalid Email Address' : 'Condition is false. Can be

left blank' }}

This will also work great when we need to conditionally add classes when using something

like Twitter Bootstrap.

For example, if the email address failed validation, we may want to add the "error" class

from Bootstrap to ourdiv class="control-group" statement.

63

<div class="control-group {{ $errors->has('email') ? 'error' : '' }}">

When the validation fails, our rendered view will have the appended error class.

<div class="control-group error">

Custom Error Messages

Want to use an error message other than the default? Maybe you even want to use a

custom error message for a given attribute and rule. Either way, the Validator class makes

it easy.

Create an array of custom messages for the Validator:

$messages = array(

 'required' => 'The :attribute field is required.',

);

$validation = Validator::make(Input::get(), $rules, $messages);

Great! Now our custom message will be used anytime a required validation check fails. But,

what is this:attribute stuff in our message? To make your life easier, the Validator class will

replace the :attribute place-holder with the actual name of the attribute! It will even remove

underscores from the attribute name.

You may also use the :other, :size, :min, :max, and :values place-holders when constructing

your error messages:

Other validation message place-holders:

$messages = array(

 'same' => 'The :attribute and :other must match.',

 'size' => 'The :attribute must be exactly :size.',

 'between' => 'The :attribute must be between :min - :max.',

 'in' => 'The :attribute must be one of the following types: :values',

);

So, what if you need to specify a custom required message, but only for the email attribute?

No problem. Just specify the message using an attribute_rule naming convention:

Specifying a custom error message for a given attribute:

$messages = array(

 'email_required' => 'We need to know your e-mail address!',

);

In the example above, the custom required message will be used for the email attribute,

while the default message will be used for all other attributes.

64

However, if you are using many custom error messages, specifying inline may become

cumbersome and messy. For that reason, you can specify your custom messages in

the custom array within the validation language file:

Adding custom error messages to the validation language file:

'custom' => array(

 'email_required' => 'We need to know your e-mail address!',

)

Custom Validation Rules

Laravel provides a number of powerful validation rules. However, it's very likely that you'll

need to eventually create some of your own. There are two simple methods for creating

validation rules. Both are solid so use whichever you think best fits your project.

Registering a custom validation rule:

Validator::register('awesome', function($attribute, $value, $parameters)

{

 return $value == 'awesome';

});

In this example we're registering a new validation rule with the validator. The rule receives

three arguments. The first is the name of the attribute being validated, the second is the

value of the attribute being validated, and the third is an array of parameters that were

specified for the rule.

Here is how your custom validation rule looks when called:

$rules = array(

 'username' => 'required|awesome',

);

Of course, you will need to define an error message for your new rule. You can do this

either in an ad-hoc messages array:

$messages = array(

 'awesome' => 'The attribute value must be awesome!',

);

$validator = Validator::make(Input::get(), $rules, $messages);

Or by adding an entry for your rule in the language/en/validation.php file:

'awesome' => 'The attribute value must be awesome!',

65

As mentioned above, you may even specify and receive a list of parameters in your custom

rule:

// When building your rules array...

$rules = array(

 'username' => 'required|awesome:yes',

);

// In your custom rule...

Validator::register('awesome', function($attribute, $value, $parameters)

{

 return $value == $parameters[0];

});

In this case, the parameters argument of your validation rule would receive an array

containing one element: "yes".

Another method for creating and storing custom validation rules is to extend the Validator

class itself. By extending the class you create a new version of the validator that has all of

the pre-existing functionality combined with your own custom additions. You can even

choose to replace some of the default methods if you'd like. Let's look at an example:

First, create a class that extends Laravel\Validator and place it in

your application/libraries directory:

Defining a custom validator class:

<?php

class Validator extends Laravel\Validator {}

Next, remove the Validator alias from config/application.php. This is necessary so that you

don't end up with 2 classes named "Validator" which will certainly conflict with one

another.

Next, let's take our "awesome" rule and define it in our new class:

Adding a custom validation rule:

<?php

class Validator extends Laravel\Validator {

 public function validate_awesome($attribute, $value, $parameters)

 {

 return $value == 'awesome';

 }

}

66

Notice that the method is named using the validate_rule naming convention. The rule is

named "awesome" so the method must be named "validate_awesome". This is one way in

which registering your custom rules and extending the Validator class are different.

Validator classes simply need to return true or false. That's it!

Keep in mind that you'll still need to create a custom message for any validation rules that

you create. The method for doing so is the same no matter how you define your rule!

WORKING WITH FILES

Reading Files

Getting the contents of a file:

$contents = File::get('path/to/file');

Writing Files

Writing to a file:

File::put('path/to/file', 'file contents');

Appending to a file:

File::append('path/to/file', 'appended file content');

Removing Files

Deleting a single file:

File::delete('path/to/file');

File Uploads

Moving a $_FILE to a permanent location:

Input::upload('picture', 'path/to/pictures', 'filename.ext');

67

Note: You can easily validate file uploads using the Validator class.

File Extensions

Getting the extension from a filename:

File::extension('picture.png');

Checking File Types

Determining if a file is given type:

if (File::is('jpg', 'path/to/file.jpg'))

{

 //

}

The is method does not simply check the file extension. The Fileinfo PHP extension will be

used to read the content of the file and determine the actual MIME type.

Note: You may pass any of the extensions defined in

the application/config/mimes.php file to the ismethod.

Note: The Fileinfo PHP extension is required for this functionality. More information

can be found on thePHP Fileinfo page.

Getting MIME Types

Getting the MIME type associated with an extension:

echo File::mime('gif'); // outputs 'image/gif'

Note: This method simply returns the MIME type defined for the extension in

theapplication/config/mimes.php file.

Copying Directories

Recursively copy a directory to a given location:

File::cpdir($directory, $destination);

http://laravel.com/docs/validation
http://php.net/manual/en/book.fileinfo.php

68

Removing Directories

Recursively delete a directory:

File::rmdir($directory);

WORKING WITH STRINGS

Capitalization, Etc.

The Str class also provides three convenient methods for manipulating string

capitalization: upper, lower, andtitle. These are more intelligent versions of the

PHP strtoupper, strtolower, and ucwords methods. More intelligent because they can handle

UTF-8 input if the multi-byte string PHP extension is installed on your web server. To use

them, just pass a string to the method:

echo Str::lower('I am a string.');

echo Str::upper('I am a string.');

echo Str::title('I am a string.');

Word & Character Limiting

Limiting the number of characters in a string:

echo Str::limit($string, 10);

echo Str::limit_exact($string, 10);

Limiting the number of words in a string:

echo Str::words($string, 10);

http://php.net/manual/en/function.strtoupper.php
http://php.net/manual/en/function.strtolower.php
http://php.net/manual/en/function.ucwords.php
http://php.net/manual/en/book.mbstring.php

69

Generating Random Strings

Generating a random string of alpha-numeric characters:

echo Str::random(32);

Generating a random string of alphabetic characters:

echo Str::random(32, 'alpha');

Singular & Plural

The String class is capable of transforming your strings from singular to plural, and vice

versa.

Getting the plural form of a word:

echo Str::plural('user');

Getting the singular form of a word:

echo Str::singular('users');

Getting the plural form if given value is greater than one:

echo Str::plural('comment', count($comments));

Slugs

Generating a URL friendly slug:

return Str::slug('My First Blog Post!');

Generating a URL friendly slug using a given separator:

return Str::slug('My First Blog Post!', '_');

70

LOCALIZATION

The Basics

Localization is the process of translating your application into different languages.

The Lang class provides a simple mechanism to help you organize and retrieve the text of

your multilingual application.

All of the language files for your application live under the application/language directory.

Within theapplication/language directory, you should create a directory for each language

your application speaks. So, for example, if your application speaks English and Spanish,

you might create en and sp directories under thelanguage directory.

Each language directory may contain many different language files. Each language file is

simply an array of string values in that language. In fact, language files are structured

identically to configuration files. For example, within the application/language/en directory,

you could create a marketing.php file that looks like this:

Creating a language file:

return array(

 'welcome' => 'Welcome to our website!',

);

Next, you should create a corresponding marketing.php file within

the application/language/sp directory. The file would look something like this:

return array(

 'welcome' => 'Bienvenido a nuestro sitio web!',

);

Nice! Now you know how to get started setting up your language files and directories. Let's

keep localizing!

Retrieving A Language Line

Retrieving a language line:

echo Lang::line('marketing.welcome')->get();

71

Retrieving a language line using the "__" helper:

echo __('marketing.welcome');

Notice how a dot was used to separate "marketing" and "welcome"? The text before the dot

corresponds to the language file, while the text after the dot corresponds to a specific string

within that file.

Need to retrieve the line in a language other than your default? Not a problem. Just

mention the language to theget method:

Getting a language line in a given language:

echo Lang::line('marketing.welcome')->get('sp');

Place Holders & Replacements

Now, let's work on our welcome message. "Welcome to our website!" is a pretty generic

message. It would be helpful to be able to specify the name of the person we are welcoming.

But, creating a language line for each user of our application would be time-consuming and

ridiculous. Thankfully, you don't have to. You can specify "place-holders" within your

language lines. Place-holders are preceded by a colon:

Creating a language line with place-holders:

'welcome' => 'Welcome to our website, :name!'

Retrieving a language line with replacements:

echo Lang::line('marketing.welcome', array('name' => 'Taylor'))->get();

Retrieving a language line with replacements using "__":

echo __('marketing.welcome', array('name' => 'Taylor'));

72

ENCRYPTION

The Basics

Laravel's Crypter class provides a simple interface for handling secure, two-way encryption.

By default, the Crypter class provides strong AES-256 encryption and decryption out of the

box via the Mcrypt PHP extension.

Note: Don't forget to install the Mcrypt PHP extension on your server.

Encrypting A String

Encrypting a given string:

$encrypted = Crypter::encrypt($value);

Decrypting A String

Decrypting a string:

$decrypted = Crypter::decrypt($encrypted);

Note: It's incredibly important to point out that the decrypt method will only decrypt

strings that were encrypted using your application key.

IOC CONTAINER

Definition

An IoC container is simply a way of managing the creation of objects. You can use it to

define the creation of complex objects, allowing you to resolve them throughout your

application using a single line of code. You may also use it to "inject" dependencies into

your classes and controllers.

73

IoC containers help make your application more flexible and testable. Since you may

register alternate implementations of an interface with the container, you may isolate the

code you are testing from external dependencies using stubs and mocks.

Registering Objects

Registering a resolver in the IoC container:

IoC::register('mailer', function()

{

 $transport = Swift_MailTransport::newInstance();

 return Swift_Mailer::newInstance($transport);

});

Great! Now we have registered a resolver for SwiftMailer in our container. But, what if we

don't want the container to create a new mailer instance every time we need one? Maybe we

just want the container to return the same instance after the initial instance is created.

Just tell the container the object should be a singleton:

Registering a singleton in the container:

IoC::singleton('mailer', function()

{

 //

});

You may also register an existing object instance as a singleton in the container.

Registering an existing instance in the container:

IoC::instance('mailer', $instance);

Resolving Objects

Now that we have SwiftMailer registered in the container, we can resolve it using

the resolve method on the IoCclass:

$mailer = IoC::resolve('mailer');

Note: You may also register controllers in the container.

http://martinfowler.com/articles/mocksArentStubs.html
http://laravel.com/docs/controllers#dependency-injection

74

UNIT TESTING

The Basics

Unit Testing allows you to test your code and verify that it is working correctly. In fact,

many advocate that you should even write your tests before you write your code! Laravel

provides beautiful integration with the popular PHPUnit testing library, making it easy to get

started writing your tests. In fact, the Laravel framework itself has hundreds of unit tests!

Creating Test Classes

All of your application's tests live in the application/tests directory. In this directory, you will

find a basic example.test.php file. Pop it open and look at the class it contains:

<?php

class TestExample extends PHPUnit_Framework_TestCase {

 /**

 * Test that a given condition is met.

 *

 * @return void

 */

 public function testSomethingIsTrue()

 {

 $this->assertTrue(true);

 }

}

Take special note of the .test.php file suffix. This tells Laravel that it should include this

class as a test case when running your test. Any files in the test directory that are not

named with this suffix will not be considered a test case.

If you are writing tests for a bundle, just place them in a tests directory within the bundle.

Laravel will take care of the rest!

For more information regarding creating test cases, check out the PHPUnit documentation.

Running Tests

To run your tests, you can use Laravel's Artisan command-line utility:

http://www.phpunit.de/manual/current/en/
http://www.phpunit.de/manual/current/en/

75

Running the application's tests via the Artisan CLI:

php artisan test

Running the unit tests for a bundle:

php artisan test bundle-name

Calling Controllers From Tests

Here's an example of how you can call your controllers from your tests:

Calling a controller from a test:

$response = Controller::call('home@index', $parameters);

Resolving an instance of a controller from a test:

$controller = Controller::resolve('application', 'home@index');

Note: The controller's action filters will still run when using Controller::call to execute

controller actions.

76

DATABASE

DATABASE CONFIGURATION

Laravel supports the following databases out of the box:

 MySQL

 PostgreSQL

 SQLite

 SQL Server

All of the database configuration options live in the application/config/database.php file.

Quick Start Using SQLite

SQLite is an awesome, zero-configuration database system. By default, Laravel is configured

to use a SQLite database. Really, you don't have to change anything. Just drop a SQLite

database named application.sqlite into the application/storage/database directory. You're

done.

Of course, if you want to name your database something besides "application", you can

modify the database option in the SQLite section of the application/config/database.php file:

'sqlite' => array(

 'driver' => 'sqlite',

 'database' => 'your_database_name',

)

If your application receives less than 100,000 hits per day, SQLite should be suitable for

production use in your application. Otherwise, consider using MySQL or PostgreSQL.

Note: Need a good SQLite manager? Check out this Firefox extension.

http://sqlite.org/
https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/

77

Configuring Other Databases

If you are using MySQL, SQL Server, or PostgreSQL, you will need to edit the configuration

options inapplication/config/database.php. In the configuration file you can find sample

configurations for each of these systems. Just change the options as necessary for your

server and set the default connection name.

Setting The Default Connection Name

As you have probably noticed, each database connection defined in

the application/config/database.php file has a name. By default, there are three connections

defined: sqlite, mysql, sqlsrv, and pgsql. You are free to change these connection names. The

default connection can be specified via the default option:

'default' => 'sqlite';

The default connection will always be used by the fluent query builder. If you need to change

the default connection during a request, use the Config::set method.

Overwriting The Default PDO Options

The PDO connector class (laravel/database/connectors/connector.php) has a set of default

PDO attributes defined which can be overwritten in the options array for each system. For

example, one of the default attributes is to force column names to lowercase

(PDO::CASE_LOWER) even if they are defined in UPPERCASE or CamelCase in the table.

Therefore, under the default attributes, query result object variables would only be

accessible in lowercase.

An example of the MySQL system settings with added default PDO attributes:

'mysql' => array(

 'driver' => 'mysql',

 'host' => 'localhost',

 'database' => 'database',

 'username' => 'root',

 'password' => '',

 'charset' => 'utf8',

 'prefix' => '',

 PDO::ATTR_CASE => PDO::CASE_LOWER,

 PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION,

 PDO::ATTR_ORACLE_NULLS => PDO::NULL_NATURAL,

 PDO::ATTR_STRINGIFY_FETCHES => false,

 PDO::ATTR_EMULATE_PREPARES => false,

),

More about the PDO connection attributes can be found in the PHP manual.

http://laravel.com/docs/database/fluent
http://php.net/manual/en/pdo.setattribute.php

78

RAW QUERIES

The Basics

The query method is used to execute arbitrary, raw SQL against your database connection.

Selecting records from the database:

$users = DB::query('select * from users');

Selecting records from the database using bindings:

$users = DB::query('select * from users where name = ?', array('test'));

Inserting a record into the database

$success = DB::query('insert into users values (?, ?)', $bindings);

Updating table records and getting the number of affected rows:

$affected = DB::query('update users set name = ?', $bindings);

Deleting from a table and getting the number of affected rows:

$affected = DB::query('delete from users where id = ?', array(1));

Other Query Methods

Laravel provides a few other methods to make querying your database simple. Here's an

overview:

Running a SELECT query and returning the first result:

$user = DB::first('select * from users where id = 1');

Running a SELECT query and getting the value of a single column:

$email = DB::only('select email from users where id = 1');

79

PDO Connections

Sometimes you may wish to access the raw PDO connection behind the Laravel Connection

object.

Get the raw PDO connection for a database:

$pdo = DB::connection('sqlite')->pdo;

Note: If no connection name is specified, the default connection will be returned.

FLUENT QUERY BUILDER

The Basics

The Fluent Query Builder is Laravel's powerful fluent interface for building SQL queries and

working with your database. All queries use prepared statements and are protected against

SQL injection.

You can begin a fluent query using the table method on the DB class. Just mention the

table you wish to query:

$query = DB::table('users');

You now have a fluent query builder for the "users" table. Using this query builder, you can

retrieve, insert, update, or delete records from the table.

Retrieving Records

Retrieving an array of records from the database:

$users = DB::table('users')->get();

Note: The get method returns an array of objects with properties corresponding to the

column on the table.

Retrieving a single record from the database:

$user = DB::table('users')->first();

80

Retrieving a single record by its primary key:

$user = DB::table('users')->find($id);

Note: If no results are found, the first method will return NULL. The get method will

return an empty array.

Retrieving the value of a single column from the database:

$email = DB::table('users')->where('id', '=', 1)->only('email');

Only selecting certain columns from the database:

$user = DB::table('users')->get(array('id', 'email as user_email'));

Selecting distinct results from the database:

$user = DB::table('users')->distinct()->get();

Building Where Clauses

where and or_where

There are a variety of methods to assist you in building where clauses. The most basic of

these methods are thewhere and or_where methods. Here is how to use them:

return DB::table('users')

 ->where('id', '=', 1)

 ->or_where('email', '=', 'example@gmail.com')

 ->first();

Of course, you are not limited to simply checking equality. You may also use greater-

than, less-than, not-equal, and like:

return DB::table('users')

 ->where('id', '>', 1)

 ->or_where('name', 'LIKE', '%Taylor%')

 ->first();

As you may have assumed, the where method will add to the query using an AND condition,

while theor_where method will use an OR condition.

81

where_in, where_not_in, or_where_in, and or_where_not_in

The suite of where_in methods allows you to easily construct queries that search an array of

values:

DB::table('users')->where_in('id', array(1, 2, 3))->get();

DB::table('users')->where_not_in('id', array(1, 2, 3))->get();

DB::table('users')

 ->where('email', '=', 'example@gmail.com')

 ->or_where_in('id', array(1, 2, 3))

 ->get();

DB::table('users')

 ->where('email', '=', 'example@gmail.com')

 ->or_where_not_in('id', array(1, 2, 3))

 ->get();

where_null, where_not_null, or_where_null, and or_where_not_null

The suite of where_null methods makes checking for NULL values a piece of cake:

return DB::table('users')->where_null('updated_at')->get();

return DB::table('users')->where_not_null('updated_at')->get();

return DB::table('users')

 ->where('email', '=', 'example@gmail.com')

 ->or_where_null('updated_at')

 ->get();

return DB::table('users')

 ->where('email', '=', 'example@gmail.com')

 ->or_where_not_null('updated_at')

 ->get();

Nested Where Clauses

You may discover the need to group portions of a WHERE clause within parentheses. Just

pass a Closure as parameter to the where or or_where methods:

$users = DB::table('users')

 ->where('id', '=', 1)

 ->or_where(function($query)

 {

 $query->where('age', '>', 25);

 $query->where('votes', '>', 100);

 })

82

 ->get();

The example above would generate a query that looks like:

SELECT * FROM "users" WHERE "id" = ? OR ("age" > ? AND "votes" > ?)

Dynamic Where Clauses

Dynamic where methods are great way to increase the readability of your code. Here are

some examples:

$user = DB::table('users')->where_email('example@gmail.com')->first();

$user = DB::table('users')->where_email_and_password('example@gmail.com',

'secret');

$user = DB::table('users')->where_id_or_name(1, 'Fred');

Table Joins

Need to join to another table? Try the join and left_join methods:

DB::table('users')

 ->join('phone', 'users.id', '=', 'phone.user_id')

 ->get(array('users.email', 'phone.number'));

The table you wish to join is passed as the first parameter. The remaining three parameters

are used to construct the ON clause of the join.

Once you know how to use the join method, you know how to left_join. The method

signatures are the same:

DB::table('users')

 ->left_join('phone', 'users.id', '=', 'phone.user_id')

 ->get(array('users.email', 'phone.number'));

You may also specify multiple conditions for an ON clause by passing a Closure as the

second parameter of the join:

DB::table('users')

 ->join('phone', function($join)

 {

 $join->on('users.id', '=', 'phone.user_id');

 $join->or_on('users.id', '=', 'phone.contact_id');

 })

83

 ->get(array('users.email', 'phone.number'));

Ordering Results

You can easily order the results of your query using the order_by method. Simply mention

the column and direction (desc or asc) of the sort:

return DB::table('users')->order_by('email', 'desc')->get();

Of course, you may sort on as many columns as you wish:

return DB::table('users')

 ->order_by('email', 'desc')

 ->order_by('name', 'asc')

 ->get();

Skip & Take

If you would like to LIMIT the number of results returned by your query, you can use

the take method:

return DB::table('users')->take(10)->get();

To set the OFFSET of your query, use the skip method:

return DB::table('users')->skip(10)->get();

Aggregates

Need to get a MIN, MAX, AVG, SUM, or COUNT value? Just pass the column to the query:

$min = DB::table('users')->min('age');

$max = DB::table('users')->max('weight');

$avg = DB::table('users')->avg('salary');

$sum = DB::table('users')->sum('votes');

$count = DB::table('users')->count();

Of course, you may wish to limit the query using a WHERE clause first:

84

$count = DB::table('users')->where('id', '>', 10)->count();

Expressions

Sometimes you may need to set the value of a column to a SQL function such as NOW().

Usually a reference to now() would automatically be quoted and escaped. To prevent this

use the raw method on the DB class. Here's what it looks like:

DB::table('users')->update(array('updated_at' => DB::raw('NOW()')));

The raw method tells the query to inject the contents of the expression into the query as a

string rather than a bound parameter. For example, you can also use expressions to

increment column values:

DB::table('users')->update(array('votes' => DB::raw('votes + 1')));

Of course, convenient methods are provided for increment and decrement:

DB::table('users')->increment('votes');

DB::table('users')->decrement('votes');

Inserting Records

The insert method expects an array of values to insert. The insert method will return true or

false, indicating whether the query was successful:

DB::table('users')->insert(array('email' => 'example@gmail.com'));

Inserting a record that has an auto-incrementing ID? You can use the insert_get_id method

to insert a record and retrieve the ID:

$id = DB::table('users')->insert_get_id(array('email' => 'example@gmail.com'));

Note: The insert_get_id method expects the name of the auto-incrementing column to be

"id".

Updating Records

To update records simply pass an array of values to the update method:

85

$affected = DB::table('users')->update(array('email' => 'new_email@gmail.com'));

Of course, when you only want to update a few records, you should add a WHERE clause

before calling the update method:

$affected = DB::table('users')

 ->where('id', '=', 1)

 ->update(array('email' => 'new_email@gmail.com'));

Deleting Records

When you want to delete records from your database, simply call the delete method:

$affected = DB::table('users')->where('id', '=', 1)->delete();

Want to quickly delete a record by its ID? No problem. Just pass the ID into the delete

method:

$affected = DB::table('users')->delete(1);

ELOQUENT ORM

The Basics

An ORM is an object-relational mapper, and Laravel has one that you will absolutely love to

use. It is named "Eloquent" because it allows you to work with your database objects and

relationships using an eloquent and expressive syntax. In general, you will define one

Eloquent model for each table in your database. To get started, let's define a simple model:

class User extends Eloquent {}

Nice! Notice that our model extends the Eloquent class. This class will provide all of the

functionality you need to start working eloquently with your database.

Note: Typically, Eloquent models live in the application/models directory.

http://en.wikipedia.org/wiki/Object-relational_mapping

86

Conventions

Eloquent makes a few basic assumptions about your database structure:

 Each table should have a primary key named id.

 Each table name should be the plural form of its corresponding model name.

Sometimes you may wish to use a table name other than the plural form of your model. No

problem. Just add a static table property your model:

class User extends Eloquent {

 public static $table = 'my_users';

}

Retrieving Models

Retrieving models using Eloquent is refreshingly simple. The most basic way to retrieve an

Eloquent model is the static find method. This method will return a single model by primary

key with properties corresponding to each column on the table:

$user = User::find(1);

echo $user->email;

The find method will execute a query that looks something like this:

SELECT * FROM "users" WHERE "id" = 1

Need to retrieve an entire table? Just use the static all method:

$users = User::all();

foreach ($users as $user)

{

 echo $user->email;

}

Of course, retrieving an entire table isn't very helpful. Thankfully, every method that is

available through the fluent query builder is available in Eloquent. Just begin querying your

model with a static call to one of thequery builder methods, and execute the query using

the get or first method. The get method will return an array of models, while the first

method will return a single model:

$user = User::where('email', '=', $email)->first();

http://laravel.com/docs/database/fluent

87

$user = User::where_email($email)->first();

$users = User::where_in('id', array(1, 2, 3))->or_where('email', '=', $email)-

>get();

$users = User::order_by('votes', 'desc')->take(10)->get();

Note: If no results are found, the first method will return NULL. The all and get methods

return an empty array.

Aggregates

Need to get a MIN, MAX, AVG, SUM, or COUNT value? Just pass the column to the

appropriate method:

$min = User::min('id');

$max = User::max('id');

$avg = User::avg('id');

$sum = User::sum('id');

$count = User::count();

Of course, you may wish to limit the query using a WHERE clause first:

$count = User::where('id', '>', 10)->count();

Inserting & Updating Models

Inserting Eloquent models into your tables couldn't be easier. First, instantiate a new

model. Second, set its properties. Third, call the save method:

$user = new User;

$user->email = 'example@gmail.com';

$user->password = 'secret';

$user->save();

Alternatively, you may use the create method, which will insert a new record into the

database and return the model instance for the newly inserted record, or false if the insert

failed.

88

$user = User::create(array('email' => 'example@gmail.com'));

Updating models is just as simple. Instead of instantiating a new model, retrieve one from

your database. Then, set its properties and save:

$user = User::find(1);

$user->email = 'new_email@gmail.com';

$user->password = 'new_secret';

$user->save();

Need to maintain creation and update timestamps on your database records? With

Eloquent, you don't have to worry about it. Just add a static timestamps property to your

model:

class User extends Eloquent {

 public static $timestamps = true;

}

Next, add created_at and updated_at date columns to your table. Now, whenever you save

the model, the creation and update timestamps will be set automatically. You're welcome.

In some cases it may be useful to update the updated_at date column without actually

modifying any data within the model. Simply use the touch method, which will also

automatically save the changes immediately:

$comment = Comment::find(1);

$comment->touch();

You can also use the timestamp function to update the updated_at date column without

saving the model immediately. Note that if you are actually modifying the model's data this

is handled behind the scenes:

$comment = Comment::find(1);

$comment->timestamp();

//do something else here, but not modifying the $comment model data

$comment->save();

Note: You can change the default timezone of your application in

the application/config/application.phpfile.

89

Relationships

Unless you're doing it wrong, your database tables are probably related to one another. For

instance, an order may belong to a user. Or, a post may have many comments. Eloquent

makes defining relationships and retrieving related models simple and intuitive. Laravel

supports three types of relationships:

 One-To-One

 One-To-Many

 Many-To-Many

To define a relationship on an Eloquent model, you simply create a method that returns the

result of either thehas_one, has_many, belongs_to, or has_many_and_belongs_to method. Let's

examine each one in detail.

One-To-One

A one-to-one relationship is the most basic form of relationship. For example, let's pretend a

user has one phone. Simply describe this relationship to Eloquent:

class User extends Eloquent {

 public function phone()

 {

 return $this->has_one('Phone');

 }

}

Notice that the name of the related model is passed to the has_one method. You can now

retrieve the phone of a user through the phone method:

$phone = User::find(1)->phone()->first();

Let's examine the SQL performed by this statement. Two queries will be performed: one to

retrieve the user and one to retrieve the user's phone:

SELECT * FROM "users" WHERE "id" = 1

SELECT * FROM "phones" WHERE "user_id" = 1

Note that Eloquent assumes the foreign key of the relationship will be user_id. Most foreign

keys will follow thismodel_id convention; however, if you want to use a different column

name as the foreign key, just pass it in the second parameter to the method:

return $this->has_one('Phone', 'my_foreign_key');

http://laravel.com/docs/database/eloquent#one-to-one
http://laravel.com/docs/database/eloquent#one-to-many
http://laravel.com/docs/database/eloquent#many-to-many

90

Want to just retrieve the user's phone without calling the first method? No problem. Just

use the dynamic phone property. Eloquent will automatically load the relationship for you,

and is even smart enough to know whether to call the get (for one-to-many relationships) or

first (for one-to-one relationships) method:

$phone = User::find(1)->phone;

What if you need to retrieve a phone's user? Since the foreign key (user_id) is on the phones

table, we should describe this relationship using the belongs_to method. It makes sense,

right? Phones belong to users. When using the belongs_to method, the name of the

relationship method should correspond to the foreign key (sans the _id). Since the foreign

key is user_id, your relationship method should be named user:

class Phone extends Eloquent {

 public function user()

 {

 return $this->belongs_to('User');

 }

}

Great! You can now access a User model through a Phone model using either your

relationship method or dynamic property:

echo Phone::find(1)->user()->first()->email;

echo Phone::find(1)->user->email;

One-To-Many

Assume a blog post has many comments. It's easy to define this relationship using

the has_many method:

class Post extends Eloquent {

 public function comments()

 {

 return $this->has_many('Comment');

 }

}

Now, simply access the post comments through the relationship method or dynamic

property:

$comments = Post::find(1)->comments()->get();

$comments = Post::find(1)->comments;

91

Both of these statements will execute the following SQL:

SELECT * FROM "posts" WHERE "id" = 1

SELECT * FROM "comments" WHERE "post_id" = 1

Want to join on a different foreign key? No problem. Just pass it in the second parameter to

the method:

return $this->has_many('Comment', 'my_foreign_key');

You may be wondering: If the dynamic properties return the relationship and require less keystrokes,

why would I ever use the relationship methods? Actually, relationship methods are very powerful.

They allow you to continue to chain query methods before retrieving the relationship. Check

this out:

echo Post::find(1)->comments()->order_by('votes', 'desc')->take(10)->get();

Many-To-Many

Many-to-many relationships are the most complicated of the three relationships. But don't

worry, you can do this. For example, assume a User has many Roles, but a Role can also

belong to many Users. Three database tables must be created to accomplish this

relationship: a users table, a roles table, and a role_user table. The structure for each table

looks like this:

Users:

id - INTEGER

email - VARCHAR

Roles:

id - INTEGER

name - VARCHAR

Role_User:

id - INTEGER

user_id - INTEGER

role_id - INTEGER

Now you're ready to define the relationship on your models using

the has_many_and_belongs_to method:

class User extends Eloquent {

 public function roles()

92

 {

 return $this->has_many_and_belongs_to('Role');

 }

}

Great! Now it's time to retrieve a user's roles:

$roles = User::find(1)->roles()->get();

Or, as usual, you may retrieve the relationship through the dynamic roles property:

$roles = User::find(1)->roles;

As you may have noticed, the default name of the intermediate table is the singular names

of the two related models arranged alphabetically and concatenated by an underscore.

However, you are free to specify your own table name. Simply pass the table name in the

second parameter to the has_and_belongs_to_many method:

class User extends Eloquent {

 public function roles()

 {

 return $this->has_many_and_belongs_to('Role', 'user_roles');

 }

}

By default only certain fields from the pivot table will be returned (the two id fields, and the

timestamps). If your pivot table contains additional columns, you can fetch them too by

using the with() method :

class User extends Eloquent {

 public function roles()

 {

 return $this->has_many_and_belongs_to('Role', 'user_roles')-

>with('column');

 }

}

Inserting Related Models

Let's assume you have a Post model that has many comments. Often you may want to

insert a new comment for a given post. Instead of manually setting the post_id foreign key

93

on your model, you may insert the new comment from it's owning Post model. Here's what

it looks like:

$comment = new Comment(array('message' => 'A new comment.'));

$post = Post::find(1);

$comment = $post->comments()->insert($comment);

When inserting related models through their parent model, the foreign key will

automatically be set. So, in this case, the "post_id" was automatically set to "1" on the newly

inserted comment.

When working with has_many relationships, you may use the save method to insert /

update related models:

$comments = array(

 array('message' => 'A new comment.'),

 array('message' => 'A second comment.'),

);

$post = Post::find(1);

$post->comments()->save($comments);

Inserting Related Models (Many-To-Many)

This is even more helpful when working with many-to-many relationships. For example,

consider a User model that has many roles. Likewise, the Role model may have many users.

So, the intermediate table for this relationship has "user_id" and "role_id" columns. Now,

let's insert a new Role for a User:

$role = new Role(array('title' => 'Admin'));

$user = User::find(1);

$role = $user->roles()->insert($role);

Now, when the Role is inserted, not only is the Role inserted into the "roles" table, but a

record in the intermediate table is also inserted for you. It couldn't be easier!

However, you may often only want to insert a new record into the intermediate table. For

example, perhaps the role you wish to attach to the user already exists. Just use the attach

method:

$user->roles()->attach($role_id);

It's also possible to attach data for fields in the intermediate table (pivot table), to do this

add a second array variable to the attach command containing the data you want to attach:

94

$user->roles()->attach($role_id, array('expires' => $expires));

Alternatively, you can use the sync method, which accepts an array of IDs to "sync" with

the intermediate table. After this operation is complete, only the IDs in the array will be on

the intermediate table.

$user->roles()->sync(array(1, 2, 3));

Working With Intermediate Tables

As your probably know, many-to-many relationships require the presence of an

intermediate table. Eloquent makes it a breeze to maintain this table. For example, let's

assume we have a User model that has many roles. And, likewise, a Role model that has

many users. So the intermediate table has "user_id" and "role_id" columns. We can access

the pivot table for the relationship like so:

$user = User::find(1);

$pivot = $user->roles()->pivot();

Once we have an instance of the pivot table, we can use it just like any other Eloquent

model:

foreach ($user->roles()->pivot()->get() as $row)

{

 //

}

You may also access the specific intermediate table row associated with a given record. For

example:

$user = User::find(1);

foreach ($user->roles as $role)

{

 echo $role->pivot->created_at;

}

Notice that each related Role model we retrieved is automatically assigned a pivot attribute.

This attribute contains a model representing the intermediate table record associated with

that related model.

Sometimes you may wish to remove all of the record from the intermediate table for a given

model relationship. For instance, perhaps you want to remove all of the assigned roles from

a user. Here's how to do it:

95

$user = User::find(1);

$user->roles()->delete();

Note that this does not delete the roles from the "roles" table, but only removes the records

from the intermediate table which associated the roles with the given user.

Eager Loading

Eager loading exists to alleviate the N + 1 query problem. Exactly what is this problem?

Well, pretend each Book belongs to an Author. We would describe this relationship like so:

class Book extends Eloquent {

 public function author()

 {

 return $this->belongs_to('Author');

 }

}

Now, examine the following code:

foreach (Book::all() as $book)

{

 echo $book->author->name;

}

How many queries will be executed? Well, one query will be executed to retrieve all of the

books from the table. However, another query will be required for each book to retrieve the

author. To display the author name for 25 books would require 26 queries. See how the

queries can add up fast?

Thankfully, you can eager load the author models using the with method. Simply mention

the function name of the relationship you wish to eager load:

foreach (Book::with('author')->get() as $book)

{

 echo $book->author->name;

}

In this example, only two queries will be executed!

SELECT * FROM "books"

SELECT * FROM "authors" WHERE "id" IN (1, 2, 3, 4, 5, ...)

96

Obviously, wise use of eager loading can dramatically increase the performance of your

application. In the example above, eager loading cut the execution time in half.

Need to eager load more than one relationship? It's easy:

$books = Book::with(array('author', 'publisher'))->get();

Note: When eager loading, the call to the static with method must always be at the

beginning of the query.

You may even eager load nested relationships. For example, let's assume our Author model

has a "contacts" relationship. We can eager load both of the relationships from our Book

model like so:

$books = Book::with(array('author', 'author.contacts'))->get();

If you find yourself eager loading the same models often, you may want to use $includes in

the model.

class Book extends Eloquent {

 public $includes = array('author');

 public function author()

 {

 return $this->belongs_to('Author');

 }

}

$includes takes the same arguments that with takes. The following is now eagerly loaded.

foreach (Book::all() as $book)

{

 echo $book->author->name;

}

Note: Using with will override a models $includes.

Constraining Eager Loads

Sometimes you may wish to eager load a relationship, but also specify a condition for the

eager load. It's simple. Here's what it looks like:

$users = User::with(array('posts' => function($query)

97

{

 $query->where('title', 'like', '%first%');

}))->get();

In this example, we're eager loading the posts for the users, but only if the post's "title"

column contains the word "first".

Getter & Setter Methods

Setters allow you to handle attribute assignment with custom methods. Define a setter by

appending "set_" to the intended attribute's name.

public function set_password($password)

{

 $this->set_attribute('hashed_password', Hash::make($password));

}

Call a setter method as a variable (without parenthesis) using the name of the method

without the "set_" prefix.

$this->password = "my new password";

Getters are very similar. They can be used to modify attributes before they're returned.

Define a getter by appending "get_" to the intended attribute's name.

public function get_published_date()

{

 return date('M j, Y', $this->get_attribute('published_at'));

}

Call the getter method as a variable (without parenthesis) using the name of the method

without the "get_" prefix.

echo $this->published_date;

Mass-Assignment

Mass-assignment is the practice of passing an associative array to a model method which

then fills the model's attributes with the values from the array. Mass-assignment can be

done by passing an array to the model's constructor:

$user = new User(array(

 'username' => 'first last',

98

 'password' => 'disgaea'

));

$user->save();

Or, mass-assignment may be accomplished using the fill method.

$user = new User;

$user->fill(array(

 'username' => 'first last',

 'password' => 'disgaea'

));

$user->save();

By default, all attribute key/value pairs will be store during mass-assignment. However, it

is possible to create a white-list of attributes that will be set. If the accessible attribute

white-list is set then no attributes other than those specified will be set during mass-

assignment.

You can specify accessible attributes by assigning the $accessible static array. Each element

contains the name of a white-listed attribute.

public static $accessible = array('email', 'password', 'name');

Alternatively, you may use the accessible method from your model:

User::accessible(array('email', 'password', 'name'));

Note: Utmost caution should be taken when mass-assigning using user-input.

Technical oversights could cause serious security vulnerabilities.

Converting Models To Arrays

When building JSON APIs, you will often need to convert your models to array so they can

be easily serialized. It's really simple.

Convert a model to an array:

return json_encode($user->to_array());

The to_array method will automatically grab all of the attributes on your model, as well as any loaded relationships.

99

Sometimes you may wish to limit the attributes that are included in your model's array,

such as passwords. To do this, add a hidden attribute definition to your model:

Excluding attributes from the array:

class User extends Eloquent {

 public static $hidden = array('password');

}

Deleting Models

Because Eloquent inherits all the features and methods of Fluent queries, deleting models

is a snap:

$author->delete();

Note, however, than this won't delete any related models (e.g. all the author's Book models

will still exist), unless you have set up foreign keys and cascading deletes.

SCHEMA BUILDER

The Basics

The Schema Builder provides methods for creating and modifying your database tables.

Using a fluent syntax, you can work with your tables without using any vendor specific

SQL.

Further Reading:

 Migrations

Creating & Dropping Tables

The Schema class is used to create and modify tables. Let's jump right into an example:

Creating a simple database table:

Schema::create('users', function($table)

{

http://laravel.com/docs/database/schema#foreign-keys
http://laravel.com/docs/database/migrations

100

 $table->increments('id');

});

Let's go over this example. The create method tells the Schema builder that this is a new

table, so it should be created. In the second argument, we passed a Closure which receives

a Table instance. Using this Table object, we can fluently add and drop columns and

indexes on the table.

Dropping a table from the database:

Schema::drop('users');

Dropping a table from a given database connection:

Schema::drop('users', 'connection_name');

Sometimes you may need to specify the database connection on which the schema

operation should be performed.

Specifying the connection to run the operation on:

Schema::create('users', function($table)

{

 $table->on('connection');

});

Adding Columns

The fluent table builder's methods allow you to add columns without using vendor specific

SQL. Let's go over it's methods:

Command Description

$table->increments('id'); Incrementing ID to the table

$table->string('email'); VARCHAR equivalent column

$table->string('name', 100); VARCHAR equivalent with a length

$table->integer('votes'); INTEGER equivalent to the table

$table->float('amount'); FLOAT equivalent to the table

101

Command Description

$table->decimal('amount', 5, 2); DECIMAL equivalent with a precision and scale

$table->boolean('confirmed'); BOOLEAN equivalent to the table

$table->date('created_at'); DATE equivalent to the table

$table->timestamp('added_on'); TIMESTAMP equivalent to the table

$table->timestamps(); Adds created_at and updated_at columns

$table->text('description'); TEXT equivalent to the table

$table->blob('data'); BLOB equivalent to the table

->nullable() Designate that the column allows NULL values

->default($value) Declare a default value for a column

->unsigned() Set INTEGER to UNSIGNED

Note: Laravel's "boolean" type maps to a small integer column on all database systems.

Example of creating a table and adding columns

Schema::table('users', function($table)

{

 $table->create();

 $table->increments('id');

 $table->string('username');

 $table->string('email');

 $table->string('phone')->nullable();

 $table->text('about');

 $table->timestamps();

});

Dropping Columns

Dropping a column from a database table:

$table->drop_column('name');

102

Dropping several columns from a database table:

$table->drop_column(array('name', 'email'));

Adding Indexes

The Schema builder supports several types of indexes. There are two ways to add the

indexes. Each type of index has its method; however, you can also fluently define an index

on the same line as a column addition. Let's take a look:

Fluently creating a string column with an index:

$table->string('email')->unique();

If defining the indexes on a separate line is more your style, here are example of using each

of the index methods:

Command Description

$table->primary('id'); Adding a primary key

$table->primary(array('fname', 'lname')); Adding composite keys

$table->unique('email'); Adding a unique index

$table->fulltext('description'); Adding a full-text index

$table->index('state'); Adding a basic index

Dropping Indexes

To drop indexes you must specify the index's name. Laravel assigns a reasonable name to

all indexes. Simply concatenate the table name and the names of the columns in the index,

then append the type of the index. Let's take a look at some examples:

Command Description

$table->drop_primary('users_id_primary');
Dropping a primary key from the

"users" table

$table->drop_unique('users_email_unique');
Dropping a unique index from the

103

Command Description

"users" table

$table-

>drop_fulltext('profile_description_fulltext');

Dropping a full-text index from the

"profile" table

$table->drop_index('geo_state_index');
Dropping a basic index from the "geo"

table

Foreign Keys

You may easily add foreign key constraints to your table using Schema's fluent interface.

For example, let's assume you have a user_id on a posts table, which references

the id column of the users table. Here's how to add a foreign key constraint for the column:

$table->foreign('user_id')->references('id')->on('users');

You may also specify options for the "on delete" and "on update" actions of the foreign key:

$table->foreign('user_id')->references('id')->on('users')->on_delete('restrict');

$table->foreign('user_id')->references('id')->on('users')->on_update('cascade');

You may also easily drop a foreign key constraint. The default foreign key names follow

the same convention as the other indexes created by the Schema builder. Here's an example:

$table->drop_foreign('posts_user_id_foreign');

Note: The field referenced in the foreign key is very likely an auto increment and

therefore automatically an unsigned integer. Please make sure to create the foreign key

field with unsigned() as both fields have to be the exact same type, the engine on both

tables has to be set to InnoDB, and the referenced table must be created before the

table with the foreign key.

$table->engine = 'InnoDB';

$table->integer('user_id')->unsigned();

http://laravel.com/docs/database/schema#dropping-indexes

104

MIGRATIONS

The Basics

Think of migrations as a type of version control for your database. Let's say your working on

a team, and you all have local databases for development. Good ole' Eric makes a change to

the database and checks in his code that uses the new column. You pull in the code, and

your application breaks because you don't have the new column. What do you do?

Migrations are the answer. Let's dig in deeper to find out how to use them!

Prepping Your Database

Before you can run migrations, we need to do some work on your database. Laravel uses a

special table to keep track of which migrations have already run. To create this table, just

use the Artisan command-line:

Creating the Laravel migrations table:

php artisan migrate:install

Creating Migrations

You can easily create migrations through Laravel's "Artisan" CLI. It looks like this:

Creating a migration

php artisan migrate:make create_users_table

Now, check your application/migrations folder. You should see your brand new migration!

Notice that it also contains a timestamp. This allows Laravel to run your migrations in the

correct order.

You may also create migrations for a bundle.

Creating a migration for a bundle:

php artisan migrate:make bundle::create_users_table

Further Reading:

 Schema Builder

http://laravel.com/docs/database/schema

105

Running Migrations

Running all outstanding migrations in application and bundles:

php artisan migrate

Running all outstanding migrations in the application:

php artisan migrate application

Running all outstanding migrations in a bundle:

php artisan migrate bundle

Rolling Back

When you roll back a migration, Laravel rolls back the entire migration "operation". So, if

the last migration command ran 122 migrations, all 122 migrations would be rolled back.

Rolling back the last migration operation:

php artisan migrate:rollback

Roll back all migrations that have ever run:

php artisan migrate:reset

REDIS

The Basics

Redis is an open source, advanced key-value store. It is often referred to as a data structure

server since keys can contain strings, hashes, lists, sets, and sorted sets.

http://redis.io/
http://redis.io/topics/data-types#strings
http://redis.io/topics/data-types#hashes
http://redis.io/topics/data-types#lists
http://redis.io/topics/data-types#sets
http://redis.io/topics/data-types#sorted-sets

106

Configuration

The Redis configuration for your application lives in the application/config/database.php file.

Within this file, you will see a redis array containing the Redis servers used by your

application:

'redis' => array(

 'default' => array('host' => '127.0.0.1', 'port' => 6379),

),

The default server configuration should suffice for development. However, you are free to

modify this array based on your environment. Simply give each Redis server a name, and

specify the host and port used by the server.

Usage

You may get a Redis instance by calling the db method on the Redis class:

$redis = Redis::db();

This will give you an instance of the default Redis server. You may pass the server name to

the db method to get a specific server as defined in your Redis configuration:

$redis = Redis::db('redis_2');

Great! Now that we have an instance of the Redis client, we may issue any of the Redis

commands to the instance. Laravel uses magic methods to pass the commands to the Redis

server:

$redis->set('name', 'Taylor');

$name = $redis->get('name');

$values = $redis->lrange('names', 5, 10);

Notice the arguments to the comment are simply passed into the magic method. Of course,

you are not required to use the magic methods, you may also pass commands to the server

using the run method:

$values = $redis->run('lrange', array(5, 10));

Just want to execute commands on the default Redis server? You can just use static magic

methods on the Redis class:

http://redis.io/commands
http://redis.io/commands

107

Redis::set('name', 'Taylor');

$name = Redis::get('name');

$values = Redis::lrange('names', 5, 10);

Note: Redis cache and session drivers are included with Laravel.

http://laravel.com/docs/cache/config#redis
http://laravel.com/docs/session/config#redis

108

CACHING

CACHE CONFIGURATION

The Basics

Imagine your application displays the ten most popular songs as voted on by your users. Do

you really need to look up these ten songs every time someone visits your site? What if you

could store them for 10 minutes, or even an hour, allowing you to dramatically speed up

your application? Laravel's caching makes it simple.

Laravel provides five cache drivers out of the box:

 File System

 Database

 Memcached

 APC

 Redis

 Memory (Arrays)

By default, Laravel is configured to use the file system cache driver. It's ready to go out of

the box with no configuration. The file system driver stores cached items as files in

the cache directory. If you're satisfied with this driver, no other configuration is required.

You're ready to start using it.

Note: Before using the file system cache driver, make sure your storage/cache directory

is writeable.

Database

The database cache driver uses a given database table as a simple key-value store. To get

started, first set the name of the database table in application/config/cache.php:

109

'database' => array('table' => 'laravel_cache'),

Next, create the table on your database. The table should have three columns:

 key (varchar)

 value (text)

 expiration (integer)

That's it. Once your configuration and table is setup, you're ready to start caching!

Memcached

Memcached is an ultra-fast, open-source distributed memory object caching system used by

sites such as Wikipedia and Facebook. Before using Laravel's Memcached driver, you will

need to install and configure Memcached and the PHP Memcache extension on your server.

Once Memcached is installed on your server you must set the driver in

the application/config/cache.php file:

'driver' => 'memcached'

Then, add your Memcached servers to the servers array:

'servers' => array(

 array('host' => '127.0.0.1', 'port' => 11211, 'weight' => 100),

)

Redis

Redis is an open source, advanced key-value store. It is often referred to as a data structure

server since keys can contain strings, hashes, lists, sets, and sorted sets.

Before using the Redis cache driver, you must configure your Redis servers. Now you can just

set the driver in theapplication/config/cache.php file:

'driver' => 'redis'

Cache Keys

To avoid naming collisions with other applications using APC, Redis, or a Memcached

server, Laravel prepends akey to each item stored in the cache using these drivers. Feel free

to change this value:

'key' => 'laravel'

http://memcached.org/
http://redis.io/
http://redis.io/topics/data-types#strings
http://redis.io/topics/data-types#hashes
http://redis.io/topics/data-types#lists
http://redis.io/topics/data-types#sets
http://redis.io/topics/data-types#sorted-sets
http://laravel.com/docs/database/redis#config

110

In-Memory Cache

The "memory" cache driver does not actually cache anything to disk. It simply maintains an

internal array of the cache data for the current request. This makes it perfect for unit

testing your application in isolation from any storage mechanism. It should never be used

as a "real" cache driver.

CACHE USAGE

Storing Items

Storing items in the cache is simple. Simply call the put method on the Cache class:

Cache::put('name', 'Taylor', 10);

The first parameter is the key to the cache item. You will use this key to retrieve the item

from the cache. The second parameter is the value of the item. The third parameter is the

number of minutes you want the item to be cached.

You may also cache something "forever" if you do not want the cache to expire:

Cache::forever('name', 'Taylor');

Note: It is not necessary to serialize objects when storing them in the cache.

Retrieving Items

Retrieving items from the cache is even more simple than storing them. It is done using

the get method. Just mention the key of the item you wish to retrieve:

$name = Cache::get('name');

By default, NULL will be returned if the cached item has expired or does not exist. However,

you may pass a different default value as a second parameter to the method:

$name = Cache::get('name', 'Fred');

Now, "Fred" will be returned if the "name" cache item has expired or does not exist.

111

What if you need a value from your database if a cache item doesn't exist? The solution is

simple. You can pass a closure into the get method as a default value. The closure will only

be executed if the cached item doesn't exist:

$users = Cache::get('count', function() {return DB::table('users')->count();});

Let's take this example a step further. Imagine you want to retrieve the number of

registered users for your application; however, if the value is not cached, you want to store

the default value in the cache using theremember method:

$users = Cache::remember('count', function() {return DB::table('users')->count();},

5);

Let's talk through that example. If the count item exists in the cache, it will be returned. If it

doesn't exist, the result of the closure will be stored in the cache for five minutes and be

returned by the method. Slick, huh?

Laravel even gives you a simple way to determine if a cached item exists using

the has method:

if (Cache::has('name'))

{

 $name = Cache::get('name');

}

Removing Items

Need to get rid of a cached item? No problem. Just mention the name of the item to

the forget method:

Cache::forget('name');

112

AUTHENTICATION

AUTH CONFIGURATION

The Basics

Most interactive applications have the ability for users to login and logout. Laravel provides

a simple class to help you validate user credentials and retrieve information about the

current user of your application.

To get started, let's look over the application/config/auth.php file. The authentication

configuration contains some basic options to help you get started with authentication.

The Authentication Driver

Laravel's authentication is driver based, meaning the responsibility for retrieving users

during authentication is delegated to various "drivers". Two are included out of the box:

Eloquent and Fluent, but you are free to write your own drivers if needed!

The Eloquent driver uses the Eloquent ORM to load the users of your application, and is the

default authentication driver. The Fluent driver uses the fluent query builder to load your

users.

The Default "Username"

The second option in the configuration file determines the default "username" of your users.

This will typically correspond to a database column in your "users" table, and will usually

be "email" or "username".

113

Authentication Model

When using the Eloquent authentication driver, this option determines the Eloquent model

that should be used when loading users.

Authentication Table

When using the Fluent authentication drivers, this option determines the database table

containing the users of your application.

AUTHENTICATION USAGE

Note: Before using the Auth class, you must specify a session driver.

Salting & Hashing

If you are using the Auth class, you are strongly encouraged to hash and salt all passwords.

Web development must be done responsibly. Salted, hashed passwords make a rainbow

table attack against your user's passwords impractical.

Salting and hashing passwords is done using the Hash class. The Hash class is uses

the bcrypt hashing algorithm. Check out this example:

$password = Hash::make('secret');

The make method of the Hash class will return a 60 character hashed string.

You can compare an unhashed value against a hashed one using the check method on

the Hash class:

if (Hash::check('secret', $hashed_value))

{

 return 'The password is valid!';

}

http://laravel.com/docs/session/config

114

Logging In

Logging a user into your application is simple using the attempt method on the Auth class.

Simply pass the username and password of the user to the method. The credentials should

be contained in an array, which allows for maximum flexibility across drivers, as some

drivers may require a different number of arguments. The login method will return true if

the credentials are valid. Otherwise, false will be returned:

$credentials = array('username' => 'example@gmail.com', 'password' => 'secret');

if (Auth::attempt($credentials))

{

 return Redirect::to('user/profile');

}

If the user's credentials are valid, the user ID will be stored in the session and the user will

be considered "logged in" on subsequent requests to your application.

To determine if the user of your application is logged in, call the check method:

if (Auth::check())

{

 return "You're logged in!";

}

Use the login method to login a user without checking their credentials, such as after a user

first registers to use your application. Just pass the user's ID:

Auth::login($user->id);

Auth::login(15);

Protecting Routes

It is common to limit access to certain routes only to logged in users. In Laravel this is

accomplished using the auth filter. If the user is logged in, the request will proceed as

normal; however, if the user is not logged in, they will be redirected to the "login" named

route.

To protect a route, simply attach the auth filter:

Route::get('admin', array('before' => 'auth', function() {}));

Note: You are free to edit the auth filter however you like. A default implementation is

located inapplication/routes.php.

http://laravel.com/docs/routing#filters
http://laravel.com/docs/routing#named-routes
http://laravel.com/docs/routing#named-routes

115

Retrieving The Logged In User

Once a user has logged in to your application, you can access the user model via

the user method on the Auth class:

return Auth::user()->email;

Note: If the user is not logged in, the user method will return NULL.

Logging Out

Ready to log the user out of your application?

Auth::logout();

This method will remove the user ID from the session, and the user will no longer be

considered logged in on subsequent requests to your application.

116

ARTISAN CLI

TASKS

The Basics

Laravel's command-line tool is called Artisan. Artisan can be used to run "tasks" such as

migrations, cronjobs, unit-tests, or anything that want.

Creating & Running Tasks

To create a task create a new class in your application/tasks directory. The class name

should be suffixed with "_Task", and should at least have a "run" method, like this:

Creating a task class:

class Notify_Task {

 public function run($arguments)

 {

 // Do awesome notifying...

 }

}

Now you can call the "run" method of your task via the command-line. You can even pass

arguments:

Calling a task from the command line:

php artisan notify

117

Calling a task and passing arguments:

php artisan notify taylor

Calling a task from your application:

Command::run(array('notify'));

Calling a task from your application with arguements:

Command::run(array('notify', 'taylor'));

Remember, you can call specific methods on your task, so, let's add an "urgent" method to

the notify task:

Adding a method to the task:

class Notify_Task {

 public function run($arguments)

 {

 // Do awesome notifying...

 }

 public function urgent($arguments)

 {

 // This is urgent!

 }

}

Now we can call our "urgent" method:

Calling a specific method on a task:

php artisan notify:urgent

Bundle Tasks

To create a task for your bundle just prefix the bundle name to the class name of your task.

So, if your bundle was named "admin", a task might look like this:

Creating a task class that belongs to a bundle:

class Admin_Generate_Task {

 public function run($arguments)

 {

118

 // Generate the admin!

 }

}

To run your task just use the usual Laravel double-colon syntax to indicate the bundle:

Running a task belonging to a bundle:

php artisan admin::generate

Running a specific method on a task belonging to a bundle:

php artisan admin::generate:list

CLI Options

Setting the Laravel environment:

php artisan foo --env=local

Setting the default database connection:

php artisan foo --database=sqlite

ARTISAN COMMANDS

Help

Description Command

View a list of available artisan

commands.

php artisan help:commands

Application Configuration (More Information)
Description Command

http://laravel.com/docs/install#basic-configuration

119

Description Command

Generate a secure application key. An

application key will not be generated

unless the field

in config/application.php is empty.

php artisan key:generate

Database Sessions (More Information)
Description Command

Create a session table php artisan session:table

Migrations (More Information)
Description Command

Create the Laravel migration table php artisan migrate:install

Creating a migration php artisan migrate:make create_users_table

Creating a migration for a bundle php artisan migrate:make bundle::tablename

Running outstanding migrations php artisan migrate

Running outstanding migrations in the

application

php artisan migrate application

Running all outstanding migrations in

a bundle

php artisan migrate bundle

Rolling back the last migration

operation

php artisan migrate:rollback

Roll back all migrations that have ever

run

php artisan migrate:reset

Bundles (More Information)
Description Command

Install a bundle php artisan bundle:install eloquent

Upgrade a bundle php artisan bundle:upgrade eloquent

Upgrade all bundles php artisan bundle:upgrade

Publish a bundle assets php artisan bundle:publish bundle_name

Publish all bundles assets php artisan bundle:publish

http://laravel.com/docs/session/config#database
http://laravel.com/docs/database/migrations
http://laravel.com/docs/bundles

120

Note: After installing you need to register the bundle

Tasks (More Information)

Description Command

Calling a task php artisan notify

Calling a task and passing arguments php artisan notify taylor

Calling a specific method on a task php artisan notify:urgent

Running a task on a bundle php artisan admin::generate

Running a specific method on a

bundle

php artisan admin::generate:list

Unit Tests (More Information)
Description Command

Running the application tests php artisan test

Running the bundle tests php artisan test bundle-name

Routing (More Information)
Description Command

Calling a route php artisan route:call get api/user/1

Note: You can replace get with post, put, delete, etc.

Application Keys

Description Command

Generate an application key php artisan key:generate

http://laravel.com/docs/bundles/#registering-bundles
http://laravel.com/docs/artisan/tasks
http://laravel.com/docs/testing
http://laravel.com/docs/routing

121

Note: You can specify an alternate key length by adding an extra argument to the

command.

CLI Options

Description Command

Setting the Laravel environment php artisan foo --env=local

Setting the default database

connection

php artisan foo --database=sqlitename

LARAVEL ON GITHUB

The Basics

Because Laravel's development and source control is done through GitHub, anyone is able

to make contributions to it. Anyone can fix bugs, add features or improve the

documentation.

After submitting proposed changes to the project, the Laravel team will review the changes

and make the decision to commit them to Laravel's core.

Repositories

Laravel's home on GitHub is at github.com/laravel. Laravel has several repositories. For basic

contributions, the only repository you need to pay attention to is the laravel repository,

located at github.com/laravel/laravel.

Branches

The laravel repository has multiple branches, each serving a specific purpose:

 master - This is the Laravel release branch. Active development does not happen on

this branch. This branch is only for the most recent, stable Laravel core code. When

you download Laravel from laravel.com, you are downloading directly from this

master branch. Do not make pull requests to this branch.

https://github.com/laravel
https://github.com/laravel/laravel
http://laravel.com/

122

 develop - This is the working development branch. All proposed code changes and

contributions by the community are pulled into this branch. When you make a pull

request to the Laravel project, this is the branch you want to pull-request into.

Once certain milestones have been reached and/or Taylor Otwell and the Laravel team is

happy with the stability and additional features of the current development branch, the

changes in the develop branch are pulled into the master branch, thus creating and

releasing the newest stable version of Laravel for the world to use.

Pull Requests

GitHub pull requests are a great way for everyone in the community to contribute to the

Laravel codebase. Found a bug? Just fix it in your fork and submit a pull request. This will

then be reviewed, and, if found as good, merged into the main repository.

In order to keep the codebase clean, stable and at high quality, even with so many people

contributing, some guidelines are necessary for high-quality pull requests:

 Branch: Unless they are immediate documentation fixes relevant for old versions,

pull requests should be sent to the develop branch only. Make sure to select that

branch as target when creating the pull request (GitHub will not automatically select

it.)

 Documentation: If you are adding a new feature or changing the API in any relevant

way, this should be documented. The documentation files can be found directly in

the core repository.

 Unit tests: To keep old bugs from re-appearing and generally hold quality at a high

level, the Laravel core is thoroughly unit-tested. Thus, when you create a pull

request, it is expected that you unit test any new code you add. For any bug you fix,

you should also add regression tests to make sure the bug will never appear again.

If you are unsure about how to write tests, the core team or other contributors will

gladly help.

Further Reading

 Contributing to Laravel via Command-Line

 Contributing to Laravel using TortoiseGit

https://help.github.com/articles/using-pull-requests
http://laravel.com/docs/contrib/docs/contrib/command-line
http://laravel.com/docs/contrib/docs/contrib/tortoisegit

123

CONTRIBUTING TO LARAVEL VIA

COMMAND-LINE

Getting Started

This tutorial explains the basics of contributing to a project on GitHub via the command-

line. The workflow can apply to most projects on GitHub, but in this case, we will be

focused on the Laravel project. This tutorial is applicable to OSX, Linux and Windows.

This tutorial assumes you have installed Git and you have created a GitHub account. If you

haven't already, look at the Laravel on GitHub documentation in order to familiarize yourself

with Laravel's repositories and branches.

Forking Laravel

Login to GitHub and visit the Laravel Repository. Click on the Fork button. This will create

your own fork of Laravel in your own GitHub account. Your Laravel fork will be located

at https://github.com/username/laravel(your GitHub username will be used in place

of username).

Cloning Laravel

Open up the command-line or terminal and make a new directory where you can make

development changes to Laravel:

mkdir laravel-develop

cd laravel-develop

Next, clone the Laravel repository (not your fork you made):

git clone https://github.com/laravel/laravel.git .

Note: The reason you are cloning the original Laravel repository (and not the fork you

made) is so you can always pull down the most recent changes from the Laravel

repository to your local repository.

https://github.com/
https://github.com/laravel/laravel
http://git-scm.com/
https://github.com/signup/free
http://laravel.com/docs/contrib/github
https://github.com/laravel/laravel

124

Adding your Fork

Next, it's time to add the fork you made as a remote repository:

git remote add fork git@github.com:username/laravel.git

Remember to replace username** with your GitHub username. *This is case-sensitive. You can

verify that your fork was added by typing:

git remote

Now you have a pristine clone of the Laravel repository along with your fork as a remote

repository. You are ready to begin branching for new features or fixing bugs.

Creating Branches

First, make sure you are working in the develop branch. If you submit changes to

the master branch, it is unlikely they will be pulled in anytime in the near future. For more

information on this, read the documentation for Laravel on GitHub. To switch to the develop

branch:

git checkout develop

Next, you want to make sure you are up-to-date with the latest Laravel repository. If any

new features or bug fixes have been added to the Laravel project since you cloned it, this

will ensure that your local repository has all of those changes. This important step is the

reason we originally cloned the Laravel repository instead of your own fork.

git pull origin develop

Now you are ready to create a new branch for your new feature or bug-fix. When you create

a new branch, use a self-descriptive naming convention. For example, if you are going to fix

a bug in Eloquent, name your branchbug/eloquent:

git branch bug/eloquent

git checkout bug/eloquent

Switched to branch 'bug/eloquent'

Or if there is a new feature to add or change to the documentation that you want to make,

for example, the localization documentation:

git branch feature/localization-docs

git checkout feature/localization-docs

Switched to branch 'feature/localization-docs'

http://laravel.com/docs/contrib/github

125

Note: Create one new branch for every new feature or bug-fix. This will encourage

organization, limit interdependency between new features/fixes and will make it easy

for the Laravel team to merge your changes into the Laravel core.

Now that you have created your own branch and have switched to it, it's time to make your

changes to the code. Add your new feature or fix that bug.

Committing

Now that you have finished coding and testing your changes, it's time to commit them to

your local repository. First, add the files that you changed/added:

git add laravel/documentation/localization.md

Next, commit the changes to the repository:

git commit -s -m "I added some more stuff to the Localization documentation."

"- -s means that you are signing-off on your commit with your name. This tells the Laravel

team know that you personally agree to your code being added to the Laravel core.

"- -m is the message that goes with your commit. Provide a brief explanation of what you

added or changed.

Pushing to your Fork

Now that your local repository has your committed changes, it's time to push (or sync) your

new branch to your fork that is hosted in GitHub:

git push fork feature/localization-docs

Your branch has been successfully pushed to your fork on GitHub.

Submitting a Pull Request

The final step is to submit a pull request to the Laravel repository. This means that you are

requesting that the Laravel team pull and merge your changes to the Laravel core. In your

browser, visit your Laravel fork athttps://github.com/username/laravel. Click on Pull Request.

Next, make sure you choose the proper base and head repositories and branches:

 base repo: laravel/laravel

 base branch: develop

 head repo: username/laravel

 head branch: feature/localization-docs

https://github.com/username/laravel

126

Use the form to write a more detailed description of the changes you made and why you

made them. Finally, click Send pull request. That's it! The changes you made have been

submitted to the Laravel team.

What's Next?

Do you have another feature you want to add or another bug you need to fix? First, make

sure you always base your new branch off of the develop branch:

git checkout develop

Then, pull down the latest changes from Laravel's repository:

git pull origin develop

Now you are ready to create a new branch and start coding again!

Jason Lewis's blog post Contributing to a GitHub Project was the primary inspiration for

this tutorial.

CONTRIBUTING TO LARAVEL USING

TORTOISEGIT

Getting Started

This tutorial explains the basics of contributing to a project on GitHub using TortoiseGit for

Windows. The workflow can apply to most projects on GitHub, but in this case, we will be

focused on the Laravel project.

This tutorial assumes you have installed TortoiseGit for Windows and you have created a

GitHub account. If you haven't already, look at the Laravel on GitHub documentation in order

to familiarize yourself with Laravel's repositories and branches.

Forking Laravel

Login to GitHub and visit the Laravel Repository. Click on the Fork button. This will create

your own fork of Laravel in your own GitHub account. Your Laravel fork will be located

http://jasonlewis.me/
http://jasonlewis.me/blog/2012/06/how-to-contributing-to-a-github-project
https://github.com/
http://code.google.com/p/tortoisegit/
https://github.com/laravel/laravel
http://laravel.com/docs/contrib/github
https://github.com/laravel/laravel

127

at https://github.com/username/laravel(your GitHub username will be used in place

of username).

Cloning Laravel

Open up Windows Explorer and create a new directory where you can make development

changes to Laravel.

 Right-click the Laravel directory to bring up the context menu. Click on Git Clone...

 Git clone

 Url: https://github.com/laravel/laravel.git

 Directory: the directory that you just created in the previous step

 Click OK

Note: The reason you are cloning the original Laravel repository (and not the fork you

made) is so you can always pull down the most recent changes from the Laravel

repository to your local repository.

Adding your Fork

After the cloning process is complete, it's time to add the fork you made as a remote

repository.

 Right-click the Laravel directory and goto TortoiseGit > Settings

 Goto the Git/Remote section. Add a new remote:

 Remote: fork

 URL: https://github.com/username/laravel.git

 Click Add New/Save

 Click OK

Remember to replace username with your GitHub username. This is case-sensitive.

Creating Branches

Now you are ready to create a new branch for your new feature or bug-fix. When you create

a new branch, use a self-descriptive naming convention. For example, if you are going to fix

a bug in Eloquent, name your branchbug/eloquent. Or if you were going to make changes to

the localization documentation, name your branchfeature/localization-docs. A good naming

convention will encourage organization and help others understand the purpose of your

branch.

 Right-click the Laravel directory and goto TortoiseGit > Create Branch

 Branch: feature/localization-docs

 Base On Branch: remotes/origin/develop

 Check Track

 Check Switch to new branch

 Click OK

128

This will create your new feature/localization-docs branch and switch you to it.

Note: Create one new branch for every new feature or bug-fix. This will encourage

organization, limit interdependency between new features/fixes and will make it easy

for the Laravel team to merge your changes into the Laravel core.

Now that you have created your own branch and have switched to it, it's time to make your

changes to the code. Add your new feature or fix that bug.

Committing

Now that you have finished coding and testing your changes, it's time to commit them to

your local repository:

 Right-click the Laravel directory and goto Git Commit -> "feature/localization-docs"...

 Commit

 Message: Provide a brief explaination of what you added or changed

 Click Sign - This tells the Laravel team know that you personally agree to

your code being added to the Laravel core

 Changes made: Check all changed/added files

 Click OK

Pushing to your Fork

Now that your local repository has your committed changes, it's time to push (or sync) your

new branch to your fork that is hosted in GitHub:

 Right-click the Laravel directory and goto Git Sync...

 Git Syncronization

 Local Branch: feature/localization-docs

 Remote Branch: leave this blank

 Remote URL: fork

 Click Push

 When asked for "username:" enter your GitHub case-sensitive username

 When asked for "password:" enter your GitHub case-sensitive account

Your branch has been successfully pushed to your fork on GitHub.

Submitting a Pull Request

The final step is to submit a pull request to the Laravel repository. This means that you are

requesting that the Laravel team pull and merge your changes to the Laravel core. In your

browser, visit your Laravel fork athttps://github.com/username/laravel. Click on Pull Request.

Next, make sure you choose the proper base and head repositories and branches:

 base repo: laravel/laravel

 base branch: develop

https://github.com/username/laravel

129

 head repo: username/laravel

 head branch: feature/localization-docs

Use the form to write a more detailed description of the changes you made and why you

made them. Finally, click Send pull request. That's it! The changes you made have been

submitted to the Laravel team.

What's Next?

Do you have another feature you want to add or another bug you need to fix? Just follow

the same instructions as before in the Creating Branches section. Just remember to always

create a new branch for every new feature/fix and don't forget to always base your new

branches off of the remotes/origin/develop branch.

http://laravel.com/docs/contrib/tortoisegit#creating-branches

	Table of Contents
	Laravel Documentation
	The Basics
	Who Will Enjoy Laravel?
	What Makes Laravel Different?
	Application Structure
	Laravel's Community
	License Information

	Laravel Change Log
	Laravel 3.2.8
	Upgrading From 3.2.7

	Laravel 3.2.7
	Upgrading From 3.2.6

	Laravel 3.2.6
	Upgrading From 3.2.5

	Laravel 3.2.5
	Upgrading From 3.2.4

	Laravel 3.2.4
	Upgrading From 3.2.3

	Laravel 3.2.3
	Upgrading From 3.2.2
	Laravel 3.2.2
	Upgrading From 3.2.1

	Laravel 3.2.1
	Upgrading From 3.2

	Laravel 3.2
	Upgrading From 3.1

	Laravel 3.1.9
	Upgrading From 3.1.8

	Laravel 3.1.8
	Upgrading From 3.1.7

	Laravel 3.1.7
	Upgrading From 3.1.6

	Laravel 3.1.6
	Upgrading From 3.1.5

	Laravel 3.1.5
	Upgrading From 3.1.4

	Laravel 3.1.4
	Upgrading From 3.1.3

	Laravel 3.1.3
	Upgrade From 3.1.2

	Laravel 3.1.2
	Upgrade From 3.1.1

	Laravel 3.1.1
	Upgrading From 3.1

	Laravel 3.1
	Upgrading From 3.0
	Replace your application/start.php file.
	Remove the display option from your errors configuration file.
	Call the parent controller's constructor from your controller.
	Prefix Laravel migration created indexes with their table name.
	Add alias for Eloquent in your application configuration.
	Update Eloquent many-to-many tables.
	Remove Eloquent bundle.
	Update your config/strings.php file.
	Add the fetch option to your database configuration file.
	Add database option to your Redis configuration.

	Installation & Setup
	Requirements
	Installation
	Extra Goodies
	Problems?

	Server Configuration
	Basic Configuration
	Environments
	Cleaner URLs

	Routing
	The Basics
	Registering a route that responds to "GET /":
	Registering a route that is valid for any HTTP verb (GET, POST, PUT, and DELETE):
	Registering routes for other request methods:
	Registering a single URI for multiple HTTP verbs:

	Wildcards
	Forcing a URI segment to be any digit:
	Allowing a URI segment to be any alpha-numeric string:
	Catching the remaining URI without limitations:
	Allowing a URI segment to be optional:

	The 404 Event
	The default 404 event handler:

	Filters
	Registering a filter:
	Attaching a filter to a route:
	Attaching an "after" filter to a route:
	Attaching multiple filters to a route:
	Passing parameters to filters:

	Pattern Filters
	Defining a URI pattern based filter:
	Defining a filter and URI pattern based filter in one:

	Global Filters
	Route Groups
	Named Routes
	Registering a named route:
	Generating a URL to a named route:
	Redirecting to the named route:
	Determine if the route handling the request has a given name:

	HTTPS Routes
	Defining an HTTPS route:
	Using the "secure" short-cut method:

	Bundle Routes
	Registering a bundle to handle routes:
	Registering a root route for a bundle:
	Registering bundle routes:

	Controller Routing
	Register all controllers for the application:
	Register all controllers for the "admin" bundle:
	Registering the "home" controller with the Router:
	Registering several controllers with the router:
	Registering a route that points to a controller action:
	Registering a filtered route that points to a controller action:
	Registering a named route that points to a controller action:

	CLI Route Testing
	Calling a route via the Artisan CLI:

	Controllers
	The Basics
	Creating a simple controller:

	Controller Routing
	Bundle Controllers
	Creating a bundle controller class:
	Registering a bundle's controller with the router:

	Action Filters
	Attaching a filter to all actions:
	Attaching a filter to only some actions:
	Attaching a filter to all except a few actions:
	Attaching a filter to run on POST:

	Nested Controllers
	Register the nested controller with the router using "dot" syntax:
	Access the "index" action of the controller:

	Controller Layouts
	RESTful Controllers
	Adding the RESTful property to the controller:
	Building RESTful controller actions:

	Dependency Injection
	Controller Factory
	Register an event to handle controller instantiation:

	Models & Libraries
	Models
	Libraries
	Auto Loading
	Best Practices
	Entities
	Services
	Repositories

	Views & Responses
	The Basics
	Creating the view:
	Returning the view from a route:
	Returning the view from a controller:
	Determining if a view exists:
	Returning a custom response:
	Returning a custom response containing a view, with binding data:
	Returning a JSON response:
	Returning Eloquent models as JSON:

	Binding Data To Views
	Binding data to a view:
	Accessing the bound data within a view:
	Chaining the binding of data to a view:
	Passing an array of data to bind data:
	Using magic methods to bind data:
	Using the ArrayAccess interface methods to bind data:

	Nesting Views
	Binding a nested view using the "nest" method:
	Passing data to a nested view:
	Using the "render" helper to display a view:
	Rendering a partial view for each item in an array:

	Named Views
	Registering a named view:
	Getting an instance of the named view:
	Binding data to a named view:

	View Composers
	Register a view composer for the "home" view:
	Register a composer that handles multiple views:

	Redirects
	Redirecting to another URI:
	Redirecting with a specific status:
	Redirecting to a secure URI:
	Redirecting to the root of your application:
	Redirecting back to the previous action:
	Redirecting to a named route:
	Redirecting to a controller action:
	Redirecting to a named route with wildcard values:
	Redirecting to an action with wildcard values:

	Redirecting With Flash Data
	Downloads
	Sending a file download response:
	Sending a file download and assigning a file name:

	Errors
	Generating a 404 error response:
	Generating a 500 error response:

	Input & Cookies
	Input
	Retrieve a value from the input array:
	Retrieve all input from the input array:
	Retrieve all input including the $_FILES array:
	Returning a default value if the requested input item doesn't exist:
	Using a Closure to return a default value:
	Determining if the input contains a given item:

	JSON Input
	Get JSON input to the application:

	Files
	Retrieving all items from the $_FILES array:
	Retrieving an item from the $_FILES array:
	Retrieving a specific item from a $_FILES array:

	Old Input
	Flashing input to the session:
	Flashing selected input to the session:
	Retrieving a flashed input item from the previous request:

	Redirecting With Old Input
	Flashing input from a Redirect instance:
	Flashing selected input from a Redirect instance:

	Cookies
	Retrieving a cookie value:
	Returning a default value if the requested cookie doesn't exist:
	Setting a cookie that lasts for 60 minutes:
	Creating a "permanent" cookie that lasts five years:
	Deleting a cookie:

	Merging & Replacing
	Merging new data into the current input:
	Replacing the entire input array with new data:

	Clearing Input

	Bundles
	The Basics
	Creating Bundles
	Creating a bundle start.php file:

	Registering Bundles
	Registering a simple bundle:
	Registering a bundle with a custom location:

	Bundles & Class Loading
	Defining auto-loader mappings in a bundle registration:

	Starting Bundles
	Starting a bundle:
	Configuration a bundle to auto-start:
	Listen for a bundle's start event:
	Disabling a bundle so it can't be started:

	Routing To Bundles
	Using Bundles
	Loading a bundle view:
	Loading a bundle configuration item:
	Loading a bundle language line:
	Determine whether a bundle exists:
	Retrieving the installation location of a bundle:
	Retrieving the configuration array for a bundle:
	Retrieving the names of all installed bundles:

	Bundle Assets
	Publish bundle assets into the public directory:

	Installing Bundles
	Installing a bundle via Artisan:

	Upgrading Bundles
	Upgrading a bundle via Artisan:
	Listening for a bundle's start event:

	Class Auto Loading
	The Basics
	Registering Directories
	Registering directories with the auto-loader:

	Registering Mappings
	Registering a class to file mapping with the auto-loader:

	Registering Namespaces
	Registering a namespace with the auto-loader:
	Registering an "underscored" library with the auto-loader:

	Errors & Logging
	Basic Configuration
	Ignored Errors
	Error Detail

	Logging
	The Logger Class
	Writing a message to the logs:
	Using magic methods to specify the log message type:

	Runtime Configuration
	The Basics
	Retrieving Options
	Retrieve a configuration option:
	Return a default value if the option doesn't exist:
	Retrieve an entire configuration array:

	Setting Options
	Set a configuration option:

	Examining Requests
	Working With The URI
	Getting the current URI for the request:
	Getting a specific segment from the URI:
	Returning a default value if the segment doesn't exist:
	Getting the full request URI, including query string:
	Determine if the URI is "home":
	Determine if the current URI begins with "docs/":

	Other Request Helpers
	Getting the current request method:
	Accessing the $_SERVER global array:
	Retrieving the requester's IP address:
	Determining if the current request is using HTTPS:
	Determining if the current request is an AJAX request:
	Determining if the current requst is via the Artisan CLI:

	Generating URLs
	The Basics
	Retrieving the application's base URL:
	Generating a URL relative to the base URL:
	Generating a HTTPS URL:
	Retrieving the current URL:
	Retrieving the current URL including query string:

	URLs To Routes
	Generating a URL to a named route:
	Generating a URL to a named route with wildcard values:

	URLs To Controller Actions
	Generating a URL to a controller action:
	Generating a URL to an action with wildcard values:

	URLs To Assets
	Generating a URL to an asset:

	URL Helpers
	Generating a URL relative to the base URL:
	Generating a URL to an asset:
	Generating a URL to a named route:
	Generating a URL to a named route with wildcard values:
	Generating a URL to a controller action:
	Generating a URL to an action with wildcard values:

	Events
	The Basics
	Firing Events
	Firing an event:
	Firing an event and retrieving the first response:
	Firing an event until the first non-null response:

	Listening To Events
	Registering an event handler:

	Queued Events
	Registering a queued event:
	Registering an event flusher:

	Laravel Events
	Event fired when a bundle is started:
	Event fired when a database query is executed:
	Event fired right before response is sent to browser:
	Event fired when a messaged is logged using the Log class:

	Validation
	The Basics
	Get an array of data you want to validate:
	Define the validation rules for your data:
	Create a Validator instance and validate the data:

	Validation Rules
	Required
	Validate that an attribute is present and is not an empty string:
	Validate that an attribute is present, when another attribute is present:

	Alpha, Alpha Numeric, & Alpha Dash
	Validate that an attribute consists solely of letters:
	Validate that an attribute consists of letters and numbers:
	Validate that an attribute only contains letters, numbers, dashes, or underscores:

	Size
	Validate that an attribute is a given length, or, if an attribute is numeric, is a given value:
	Validate that an attribute size is within a given range:
	Validate that an attribute is at least a given size:
	Validate that an attribute is no greater than a given size:

	Numeric
	Validate that an attribute is numeric:
	Validate that an attribute is an integer:

	Inclusion & Exclusion
	Validate that an attribute is contained in a list of values:
	Validate that an attribute is not contained in a list of values:

	Confirmation
	Validate that an attribute is confirmed:

	Acceptance
	Validate that an attribute is accepted:

	Same & Different
	Validate that an attribute matches another attribute:
	Validate that two attributes have different values:

	Regular Expression Match
	Validate that an attribute matches a regular expression:

	Uniqueness & Existence
	Validate that an attribute is unique on a given database table:
	Specify a custom column name for the unique rule:
	Forcing the unique rule to ignore a given ID:
	Validate that an attribute exists on a given database table:
	Specify a custom column name for the exists rule:

	Dates
	Validate that a date attribute is before a given date:
	Validate that a date attribute is after a given date:

	E-Mail Addresses
	Validate that an attribute is an e-mail address:

	URLs
	Validate that an attribute is a URL:
	Validate that an attribute is an active URL:

	Uploads
	Validate that a file is one of the given types:
	Validate that a file is an image:
	Validate that a file is no more than a given size in kilobytes:

	Retrieving Error Messages
	Determine if an attribute has an error message:
	Retrieve the first error message for an attribute:
	Format an error message:
	Get all of the error messages for a given attribute:
	Format all of the error messages for an attribute:
	Get all of the error messages for all attributes:
	Format all of the error messages for all attributes:

	Validation Walkthrough
	Custom Error Messages
	Create an array of custom messages for the Validator:
	Other validation message place-holders:
	Specifying a custom error message for a given attribute:
	Adding custom error messages to the validation language file:

	Custom Validation Rules
	Registering a custom validation rule:
	Defining a custom validator class:
	Adding a custom validation rule:

	Working with Files
	Reading Files
	Getting the contents of a file:

	Writing Files
	Writing to a file:
	Appending to a file:

	Removing Files
	Deleting a single file:

	File Uploads
	Moving a $_FILE to a permanent location:

	File Extensions
	Getting the extension from a filename:

	Checking File Types
	Determining if a file is given type:

	Getting MIME Types
	Getting the MIME type associated with an extension:

	Copying Directories
	Recursively copy a directory to a given location:

	Removing Directories
	Recursively delete a directory:

	Working with Strings
	Capitalization, Etc.
	Word & Character Limiting
	Limiting the number of characters in a string:
	Limiting the number of words in a string:

	Generating Random Strings
	Generating a random string of alpha-numeric characters:
	Generating a random string of alphabetic characters:

	Singular & Plural
	Getting the plural form of a word:
	Getting the singular form of a word:
	Getting the plural form if given value is greater than one:

	Slugs
	Generating a URL friendly slug:
	Generating a URL friendly slug using a given separator:

	Localization
	The Basics
	Creating a language file:

	Retrieving A Language Line
	Retrieving a language line:
	Retrieving a language line using the "__" helper:
	Getting a language line in a given language:

	Place Holders & Replacements
	Creating a language line with place-holders:
	Retrieving a language line with replacements:
	Retrieving a language line with replacements using "__":

	Encryption
	The Basics
	Encrypting A String
	Encrypting a given string:

	Decrypting A String
	Decrypting a string:

	IoC Container
	Definition
	Registering Objects
	Registering a resolver in the IoC container:
	Registering a singleton in the container:
	Registering an existing instance in the container:

	Resolving Objects

	Unit Testing
	The Basics
	Creating Test Classes
	Running Tests
	Running the application's tests via the Artisan CLI:
	Running the unit tests for a bundle:

	Calling Controllers From Tests
	Calling a controller from a test:
	Resolving an instance of a controller from a test:

	Database Configuration
	Quick Start Using SQLite
	Configuring Other Databases
	Setting The Default Connection Name
	Overwriting The Default PDO Options

	Raw Queries
	The Basics
	Selecting records from the database:
	Selecting records from the database using bindings:
	Inserting a record into the database
	Updating table records and getting the number of affected rows:
	Deleting from a table and getting the number of affected rows:

	Other Query Methods
	Running a SELECT query and returning the first result:
	Running a SELECT query and getting the value of a single column:

	PDO Connections
	Get the raw PDO connection for a database:

	Fluent Query Builder
	The Basics
	Retrieving Records
	Retrieving an array of records from the database:
	Retrieving a single record from the database:
	Retrieving a single record by its primary key:
	Retrieving the value of a single column from the database:
	Only selecting certain columns from the database:
	Selecting distinct results from the database:

	Building Where Clauses
	where and or_where
	where_in, where_not_in, or_where_in, and or_where_not_in
	where_null, where_not_null, or_where_null, and or_where_not_null

	Nested Where Clauses
	Dynamic Where Clauses
	Table Joins
	Ordering Results
	Skip & Take
	Aggregates
	Expressions
	Inserting Records
	Updating Records
	Deleting Records

	Eloquent ORM
	The Basics
	Conventions
	Retrieving Models
	Aggregates
	Inserting & Updating Models
	Relationships
	One-To-One
	One-To-Many
	Many-To-Many

	Inserting Related Models
	Inserting Related Models (Many-To-Many)

	Working With Intermediate Tables
	Eager Loading
	Constraining Eager Loads
	Getter & Setter Methods
	Mass-Assignment
	Converting Models To Arrays
	Convert a model to an array:
	Excluding attributes from the array:

	Deleting Models

	Schema Builder
	The Basics
	Creating & Dropping Tables
	Creating a simple database table:
	Dropping a table from the database:
	Dropping a table from a given database connection:
	Specifying the connection to run the operation on:

	Adding Columns
	Example of creating a table and adding columns

	Dropping Columns
	Dropping a column from a database table:
	Dropping several columns from a database table:

	Adding Indexes
	Fluently creating a string column with an index:

	Dropping Indexes
	Foreign Keys

	Migrations
	The Basics
	Prepping Your Database
	Creating Migrations
	Running Migrations
	Rolling Back

	Redis
	The Basics
	Configuration
	Usage

	Cache Configuration
	The Basics
	Database
	Memcached
	Redis
	Cache Keys
	In-Memory Cache

	Cache Usage
	Storing Items
	Retrieving Items
	Removing Items

	Auth Configuration
	The Basics
	The Authentication Driver
	The Default "Username"
	Authentication Model
	Authentication Table

	Authentication Usage
	Salting & Hashing
	Logging In
	Protecting Routes
	Retrieving The Logged In User
	Logging Out

	Tasks
	The Basics
	Creating & Running Tasks
	Creating a task class:
	Calling a task from the command line:
	Calling a task and passing arguments:
	Calling a task from your application:
	Calling a task from your application with arguements:
	Adding a method to the task:
	Calling a specific method on a task:

	Bundle Tasks
	Creating a task class that belongs to a bundle:
	Running a task belonging to a bundle:
	Running a specific method on a task belonging to a bundle:

	CLI Options
	Setting the Laravel environment:
	Setting the default database connection:

	Artisan Commands
	Help
	Application Configuration (More Information)
	Database Sessions (More Information)
	Migrations (More Information)
	Bundles (More Information)
	Tasks (More Information)
	Unit Tests (More Information)
	Routing (More Information)
	Application Keys
	CLI Options

	Laravel on GitHub
	The Basics
	Repositories
	Branches
	Pull Requests

	Contributing to Laravel Via Command-Line
	Getting Started
	Forking Laravel
	Cloning Laravel
	Adding your Fork
	Creating Branches
	Committing
	Pushing to your Fork
	Submitting a Pull Request
	What's Next?

	Contributing to Laravel Using TortoiseGit
	Getting Started
	Forking Laravel
	Cloning Laravel
	Adding your Fork
	Creating Branches
	Committing
	Pushing to your Fork
	Submitting a Pull Request
	What's Next?

